Initial Validation of a Non-equilibrium Wilcox k - omega Turbulence Model in Subsonic and Transonic Flow Regimes

Author(s):  
Thomas Kudla ◽  
Markus Rumpfkeil
Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4052
Author(s):  
Jie Wang ◽  
Hongfang Gu

When water vapor in moist air reaches supersaturation in a transonic flow system, non-equilibrium condensation forms a large number of droplets which may adversely affect the operation of some thermal-hydraulic equipment. For a better understanding of this non-equilibrium condensing phenomenon, a numerical model is applied to analyze moist air condensation in a transonic flow system by using the theory of nucleation and droplet growth. The Benson model is adopted to correct the liquid-plane surface tension equation for realistic results. The results show that the distributions of pressure, temperature and Mach number in moist air are significantly different from those in dry air. The dry air model exaggerates the Mach number by 19% and reduces both the pressure and the temperature by 34% at the nozzle exit as compared with the moist air model. At a Laval nozzle, for example, the nucleation rate, droplet number and condensation rate increase significantly with increasing relative humidity. The results also reveal the fact that the number of condensate droplets increases rapidly when moist air reaches 60% relative humidity. These findings provide a fundamental approach to account for the effect of condensate droplet formation on moist gas in a transonic flow system.


Author(s):  
M. H. Noorsalehi ◽  
M. Nili-Ahamadabadi ◽  
E. Shirani ◽  
M. Safari

In this study, a new inverse design method called Elastic Surface Algorithm (ESA) is developed and enhanced for axial-flow compressor blade design in subsonic and transonic flow regimes with separation. ESA is a physically based iterative inverse design method that uses a 2D flow analysis code to estimate the pressure distribution on the solid structure, i.e. airfoil, and a 2D solid beam finite element code to calculate the deflections due to the difference between the calculated and target pressure distributions. In order to enhance the ESA, the wall shear stress distribution, besides pressure distribution, is applied to deflect the shape of the airfoil. The enhanced method is validated through the inverse design of the rotor blade of the first stage of an axial-flow compressor in transonic viscous flow regime. In addition, some design examples are presented to prove the effectiveness and robustness of the method. The results of this study show that the enhanced Elastic Surface Algorithm is an effective inverse design method in flow regimes with separation and normal shock.


2000 ◽  
Vol 403 ◽  
pp. 173-199 ◽  
Author(s):  
ZVI RUSAK ◽  
JANG-CHANG LEE

A new small-disturbance model for a steady transonic flow of moist air with non-equilibrium and homogeneous condensation around a thin airfoil is presented. The model explores the nonlinear interactions among the near-sonic speed of the flow, the small thickness ratio and angle of attack of the airfoil, and the small amount of water vapour in the air. The condensation rate is calculated according to classical nucleation and droplet growth models. The asymptotic analysis gives the similarity parameters that govern the flow problem. Also, the flow field can be described by a non-homogeneous (extended) transonic small-disturbance (TSD) equation coupled with a set of four ordinary differential equations for the calculation of the condensate (or sublimate) mass fraction. An iterative numerical scheme which combines Murman & Cole's (1971) method for the solution of the TSD equation with Simpson's integration rule for the estimation of the condensate mass production is developed. The results show good agreement with available numerical simulations using the inviscid fluid flow equations. The model is used to study the effects of humidity and of energy supply from condensation on the aerodynamic performance of airfoils.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 272
Author(s):  
Chenyu Wu ◽  
Haoran Li ◽  
Yufei Zhang ◽  
Haixin Chen

The accuracy of an airfoil stall prediction heavily depends on the computation of the separated shear layer. Capturing the strong non-equilibrium turbulence in the shear layer is crucial for the accuracy of a stall prediction. In this paper, different Reynolds-averaged Navier–Stokes turbulence models are adopted and compared for airfoil stall prediction. The results show that the separated shear layer fixed k−v2¯−ω (abbreviated as SPF k−v2¯−ω) turbulence model captures the non-equilibrium turbulence in the separated shear layer well and gives satisfactory predictions of both thin-airfoil stall and trailing-edge stall. At small Reynolds numbers (Re~105), the relative error between the predicted CL,max of NACA64A010 by the SPF k−v2¯−ω model and the experimental data is less than 3.5%. At high Reynolds numbers (Re~106), the CL,max of NACA64A010 and NACA64A006 predicted by the SPF k−v2¯−ω model also has an error of less than 5.5% relative to the experimental data. The stall of the NACA0012 airfoil, which features trailing-edge stall, is also computed by the SPF k−v2¯−ω model. The SPF k−v2¯−ω model is also applied to a NACA0012 airfoil, which features trailing-edge stall and an error of CL relative to the experiment at CL>1.0 is smaller than 3.5%. The SPF k−v2¯−ω model shows higher accuracy than other turbulence models.


Author(s):  
Lv Yufeng ◽  
Zhao Minfu ◽  
Li Weiqing

Mechanical non-homogeneous and thermal non-equilibrium phenomenon exists in two-phase critical flow compared with single phase flow. A one-dimensional two-fluid critical flow model is developed for initially subcooled water flowing in pipe or orifices. The model accounts for thermal nonequilibrium between the liquid and vapor bubbles and for interphase relative motion. In this model, an improved correlation to calculate flashing inception location and surperheat is proposed. The model consists of six conservation equations as well as a seventh equation representing bubble growth in bubbly flow. Closure of the set of governing equations is performed with constitutive relationships which determine the interfacial momentum terms due to mass exchange, wall to liquid and wall to vapour frictional forces, liquid to gas interfacial force and interfacial heat transfer rate. The model considers the development of three flow regimes, namely, bubbly, churn and annular flow regimes. Model predictions compare favorably with experimental data over a wide range of pressures and pipe diameters and lengths.


2013 ◽  
Vol 2013.66 (0) ◽  
pp. 225-226
Author(s):  
Kazuyuki YOKOO ◽  
Shigeru MATUO ◽  
Junji NAGAO ◽  
Toshiaki SETOGUCHI

Sign in / Sign up

Export Citation Format

Share Document