The Near-Field Acoustics of Supersonic Single and Dual Impinging Jets with Correlations to Far-Field Noise

Author(s):  
Scott Hromisin ◽  
Leighton M. Myers ◽  
Philip J. Morris ◽  
Dennis K. McLaughlin
2011 ◽  
Vol 19 (03) ◽  
pp. 291-316 ◽  
Author(s):  
ALI UZUN ◽  
M. YOUSUFF HUSSAINI

This paper demonstrates an application of computational aeroacoustics to the prediction of noise generated by a round nozzle jet flow. In this study, the nozzle internal flow and the free jet flow outside are computed simultaneously by a high-order accurate, multi-block, large-eddy simulation (LES) code with overset grid capability. To simulate the jet flow field and its radiated noise, we solve the governing equations on approximately 370 million grid points using high-fidelity numerical schemes developed for computational aeroacoustics. Projection of the near-field noise to the far-field is accomplished by coupling the LES data with the Ffowcs Williams–Hawkings method. The main emphasis of these simulations is to compute the jet flow in sufficient detail to accurately capture the physical processes that lead to noise generation. Two separate simulations are performed using turbulent and laminar inflow conditions at the jet nozzle inlet. Simulation results are compared with the corresponding experimental measurements. Results show that nozzle inflow conditions have an influence on the jet flow field and far-field noise.


2019 ◽  
Vol 9 (21) ◽  
pp. 4485
Author(s):  
Sultan Alqash ◽  
Sharvari Dhote ◽  
Kamran Behdinan

In this paper, a new approach is proposed to predict the far-field noise of a landing gear (LG) based on near-field flow data obtained from multiple two-dimensional (2D) simulations. The LG consists of many bluff bodies with various shapes and sizes. The analysis begins with dividing the LG structure into multiple 2D cross-sections (C-Ss) representing different configurations. The C-Ss locations are selected based on the number of components, sizes, and geometric complexities. The 2D Computational Fluid Dynamics (CFD) analysis for each C-S is carried out first to obtain the acoustic source data. The Ffowcs Williams and Hawkings acoustic analogy (FW-H) is then used to predict the far-field noise. To compensate for the third dimension, a source correlation length (SCL) is assumed based on a perfectly correlated flow. The overall noise of the LG is calculated as the incoherent sum of the predicted noise from all C-Ss. Flow over a circular cylinder is then studied to examine the effect of the 2D CFD results on the predicted noise. The results are in good agreement with reported experimental and numerical data. However, the Strouhal number (St) is over-predicted. The proposed approach provides a reasonable estimation of the LG far-field noise at a low computational cost. Thus, it has the potential to be used as a quick tool to predict the far-field noise from an LG during the design stage.


Author(s):  
Dean Long ◽  
Steven Martens

Model scale tests are conducted to assess the Noise/Performance trade for high speed jet noise reduction technologies. It is demonstrated that measuring the near field acoustic signature with a microphone array can be used to assess the far field noise using a procedure known as acoustic holography. The near field noise measurement is mathematically propagated producing an estimate of the noise level at the new location. Outward propagation produces an estimate of the far field noise. Propagation toward the jet axis produces the source distribution. Tests are conducted on convergent/divergent nozzles with three different area ratios, and several different chevron geometries. Noise is characterized by two independent processes: Shock cell noise radiating in the forward quadrant is produced when the nozzle is operated at non-ideally expanded conditions. Mach wave radiation propagates into the aft quadrant when the exhaust temperature is elevated. These results show good agreement with actual far field measurements from tests in the GE Cell 41 Acoustic Test Facility. Simultaneous performance measurement shows the change in thrust coefficient for different test conditions and configurations. Chevrons attached to the nozzle exit can reduce the noise by several dB at the expense of a minimal thrust loss.


Author(s):  
James P. Erwin ◽  
Neeraj Sinha ◽  
Gregory P. Rodebaugh

Supersonic impinging jet flowfields contain self-sustaining acoustic feedback features that create high levels of discrete frequency tonal noise. These types of flowfields are typically found with short takeoff and landing military aircraft as well as jet blast deflector operations on aircraft carrier decks. The US Navy has a goal to reduce the noise generated by these impinging jet configurations and is investing in computational aeroacoustics to aid in the development of noise reduction concepts. In this paper, implicit Large Eddy Simulation (LES) of impinging jet flow-fields are coupled with a far-field acoustic transformation using the Ffowcs Williams and Hawkings (FW-H) equation method. The LES solves the noise generating regions of the flow in the nearfield, and the FW-H transformation is used to predict the far-field noise. The noise prediction methodology is applied to a Mach 1.5 vertically impinging jet at a stand-off distance of five nozzle throat diameters. Both the LES and FW-H acoustic predictions compare favorably with experimental measurements. Time averaged and instantaneous flowfields are shown. A calculation performed previously at a stand-off distance of four nozzle throat diameters is revisited with adjustments to the methodology including a new grid, time integrator, and longer simulation runtime. The calculation exhibited various feedback loops which were not present before and can be attributed to an explicit time marching scheme. In addition, an instability analysis of two heated jets is performed. Tonal frequencies and instability modes are identified for the sample problems.


2000 ◽  
Vol 415 ◽  
pp. 175-202 ◽  
Author(s):  
Y. P. GUO ◽  
M. C. JOSHI ◽  
P. H. BENT ◽  
K. J. YAMAMOTO

This paper discusses unsteady surface pressures on aircraft flaps and their correlation with far-field noise. Analyses are made of data from a 4.7% DC-10 aircraft model test, conducted in the 40 × 80 feet wind tunnel at NASA Ames Research Center. Results for various slat/wing/flap configurations and various flow conditions are discussed in detail to reveal major trends in surface pressure fluctuations. Spectral analysis, including cross-correlation/coherence, both among unsteady surface pressures and between far-field noise and near-field fluctuations, is used to reveal the most coherent motions in the near field and identify potential sources of noise related to flap flows. Dependencies of surface pressure fluctuations on mean flow Mach numbers, flap settings and slat angles are discussed. Dominant flow features in flap side edge regions, such as the formation of double-vortex structures, are shown to manifest themselves in the unsteady surface pressures as a series of spectral humps. The spectral humps are shown to correlate well with the radiated noise, indicating the existence of major noise sources in flap side edge regions. Strouhal number scaling is used to collapse the data with satisfactory results. The effects of flap side edge fences on surface pressures are also discussed. It is shown that the application of fences effectively increases the thickness of the flaps so that the double-vortex structures have more time to evolve. As a result, the characteristic timescale of the unsteady sources increases, which in turn leads to a decrease in the dominant frequency of the source process. Based on this, an explanation is proposed for the noise reduction mechanism of flap side edge fences.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
X. D. Song ◽  
Q. Li ◽  
D. J. Wu

Bridge noise and rail noise induced by passing trains should be included while estimating low- and medium-frequency (20–1000 Hz) noise in railway viaducts. However, the prediction of bridge noise and rail noise using a three-dimensional (3D) acoustic model is not efficient, especially for far-field points. In this study, a combined 2.5-dimensional (2.5D) and two-dimensional (2D) method is proposed to predict bridge noise and rail noise in both the near- and far-field. First, the near-field noise is obtained by combining the 2.5D acoustic model and a 3D vehicle–track–bridge interaction analysis. Then, the 2D method is used to estimate the attenuation of bridge noise and rail noise in the far-field, and the accuracy is validated through comparison with the 2.5D method. Third, the near-field points are treated as reference sources, and the noise at far-field points is predicted by combining the 2.5D and 2D methods. Finally, the proposed method is used to predict the bridge noise and rail noise for a box girder and a U-shaped girder. The spatial distribution of the bridge noise and rail noise is investigated. Generally, the rail noise is dominant above the bridge, and the bridge noise has a larger contribution to the total noise beneath the bridge. The rail noise from the U-shaped girder is much smaller than that from the box girder due to the shielding effect of the webs.


1982 ◽  
Vol 116 ◽  
pp. 379-391 ◽  
Author(s):  
Nagy S. Nosseir ◽  
Chih-Ming Ho

The aerodynamic noise generated by a subsonic jet impinging on a flat plate is studied from measurements of near-field and surface-pressure fluctuations. The far-field noise measured at 90° to the jet axis is found to be generated by two different physical mechanisms. One mechanism is the impinging of the large coherent structures on the plate, and the other is associated with the initial instability of the shear layer. These two sources of noise radiate to the far field via different acoustical paths.


Author(s):  
Pankaj Rajput ◽  
Sunil Kumar

The main aim of this investigation is to analyze directional noise reduction resulting from asymmetric high momentum fluidic injection downstream of a Mach 0.9 nozzle. Jet noise has been identified as one of the primary obstacles to increasing commercial aviation capacity. Microjets in cross flow are known to enhance turbulent mixing in the shear layer due to the induced stream-wise vortices. This enhanced mixing can be used for reorganizing the spatial distribution of acoustic energy. Targeted reduction in the downward-emitted turbulent mixing noise can be achieved by strategically injecting high momentum fluid downstream of the jet exhaust. Detailed Large Eddy Simulations were performed on a hybrid block structured-unstructured mesh to generate the flow field which was then used for near field and far field noise computation. Aeroacoustic analogy based formulation was used for computing far-field noise estimation. Benchmark cases were validated with preexisting experimental data sets. Mean flow measurements suggest shorter jet core lengths due to the enhanced mixing resulting from fluidic injection. The induced asymmetry due to the fluidic injection gives rise to an asymmetric acoustic field leading to targeted directional noise reduction in the far field as measured by pressure probes.


Sign in / Sign up

Export Citation Format

Share Document