Influence of Eddy Viscosity on Linear Modeling of Self-Similar Coherent Structures in the Jet Far Field

2022 ◽  
Author(s):  
Phoebe Kuhn ◽  
Jens S. Müller ◽  
Sophie Knechtel ◽  
Julio Soria ◽  
Kilian Oberleithner
2007 ◽  
Vol 130 (1) ◽  
Author(s):  
A.-M. Shinneeb ◽  
R. Balachandar ◽  
J. D. Bugg

This paper investigates an isothermal free water jet discharging horizontally from a circular nozzle (9mm) into a stationary body of water. The jet exit velocity was 2.5m∕s and the exit Reynolds number was 22,500. The large-scale structures in the far field were investigated by performing a proper orthogonal decomposition (POD) analysis of the velocity field obtained using a particle image velocimetry system. The number of modes used for the POD reconstruction of the velocity fields was selected to recover 40% of the turbulent kinetic energy. A vortex identification algorithm was then employed to quantify the size, circulation, and direction of rotation of the exposed vortices. A statistical analysis of the distribution of number, size, and strength of the identified vortices was carried out to explore the characteristics of the coherent structures. The results clearly reveal that a substantial number of vortical structures of both rotational directions exist in the far-field region of the jet. The number of vortices decreases in the axial direction, while their size increases. The mean circulation magnitude is preserved in the axial direction. The results also indicate that the circulation magnitude is directly proportional to the square of the vortex radius and the constant of proportionality is a function of the axial location.


2019 ◽  
Vol 862 ◽  
pp. 1029-1059 ◽  
Author(s):  
Qiang Yang ◽  
Ashley P. Willis ◽  
Yongyun Hwang

A new set of exact coherent states in the form of a travelling wave is reported in plane channel flow. They are continued over a range in $Re$ from approximately $2600$ up to $30\,000$, an order of magnitude higher than those discovered in the transitional regime. This particular type of exact coherent states is found to be gradually more localised in the near-wall region on increasing the Reynolds number. As larger spanwise sizes $L_{z}^{+}$ are considered, these exact coherent states appear via a saddle-node bifurcation with a spanwise size of $L_{z}^{+}\simeq 50$ and their phase speed is found to be $c^{+}\simeq 11$ at all the Reynolds numbers considered. Computation of the eigenspectra shows that the time scale of the exact coherent states is given by $h/U_{cl}$ in channel flow at all Reynolds numbers, and it becomes equivalent to the viscous inner time scale for the exact coherent states in the limit of $Re\rightarrow \infty$. The exact coherent states at several different spanwise sizes are further continued to a higher Reynolds number, $Re=55\,000$, using the eddy-viscosity approach (Hwang & Cossu, Phys. Rev. Lett., vol. 105, 2010, 044505). It is found that the continued exact coherent states at different sizes are self-similar at the given Reynolds number. These observations suggest that, on increasing Reynolds number, new sets of self-sustaining coherent structures are born in the near-wall region. Near this onset, these structures scale in inner units, forming the near-wall self-sustaining structures. With further increase of Reynolds number, the structures that emerged at lower Reynolds numbers subsequently evolve into the self-sustaining structures in the logarithmic region at different length scales, forming a hierarchy of self-similar coherent structures as hypothesised by Townsend (i.e. attached eddy hypothesis). Finally, the energetics of turbulent flow is discussed for a consistent extension of these dynamical systems notions to high Reynolds numbers.


2020 ◽  
Author(s):  
Jorge Sánchez-Sesma

ABSTRACTObjectivesThe present COVID-19 pandemic (C19P) is challenging our socities all over the world. In this work, based on massive health information daily updated, the C19P daily death numbers at a global level, are modelled, analyzed and forecasted.MethodsTwo empirical models are proposed to explain daily death (DD) records: a) self-similar (SS) recurrences of the global responses, and b) geometric averaging of two independent SS models for global DD records.FindingsThe detected self-similar recurrences in the global response suggest three global “self-similar waves” that support multi-month forecasts of the DD numbers. However, there are upper and lower-limit SS forecast DD scenarios that were jointly integrated with a geometrical average (GA) model, that support the existence of a moderated “third wave”, with a decaying stage for the next months (July-September 2020). It appears that the “third world” (South America [SAM]+Asia [ASI] +Africa [AFR]), is the actual “big player”, (following China, and Europe [EUR]+North America [NAM]) with its biggest contribution to a global “third wave” (W3) of C19P.ConclusionThe empirical global modeling of the C19P has suggested us a possible moderated W3 scenario, with contributions mainly coming from the third world people. This moderated W3 scenario, after to be calibrated with the last weeks, has provided to stakeholders of significant data and criteria to define, sustain and support plans for the next months, based on data and self-similarities. These scenarios provide a well-based perspective on non-linear dynamics of C19P, that will complement the standard health and economic models.


Author(s):  
Benedikt Krohn ◽  
Sunming Qin ◽  
Victor Petrov ◽  
Annalisa Manera

Turbulent free jets attracted the focus of many scientists within the past century regarding the understanding of mass- and momentum transport in the turbulent shear field, especially in the near-field and the self-similar region. Recent investigations attempt to understand the intermediate fields, called the mixing transition or ‘the route to self-similarity’. An apparent gap is recognized in light of this mixing transition, with two main conjectures being put forth. Firstly the flow will always asymptotically reach a fully self-similar state if boundary conditions permit. The second proposes partial and local self-similarity within the mixing transition. We address the later with an experimental investigation of the intermediate field turbulence dynamics in a non-confined free jet with a nozzle diameter of 12.7 mm and an outer scale Reynolds number of 15,000. High speed Particle Image Velocimetry (PIV) is used to record the velocity fields with a final spatial resolution of 194 × 194 μm2. The analysis focuses on higher order moments and two-point correlations of velocity variances in space and time. We observed local self-similarity in the measured correlation fields. Coherent structures are present within the near-field where the turbulent energy spectrum cascades along a dissipative slope. Towards the transition region, the spectrum smoothly transforms to a viscous cascade, as it is commonly observed in the self-similar region.


1982 ◽  
Vol 116 ◽  
pp. 379-391 ◽  
Author(s):  
Nagy S. Nosseir ◽  
Chih-Ming Ho

The aerodynamic noise generated by a subsonic jet impinging on a flat plate is studied from measurements of near-field and surface-pressure fluctuations. The far-field noise measured at 90° to the jet axis is found to be generated by two different physical mechanisms. One mechanism is the impinging of the large coherent structures on the plate, and the other is associated with the initial instability of the shear layer. These two sources of noise radiate to the far field via different acoustical paths.


1990 ◽  
Vol 217 ◽  
pp. 299-330 ◽  
Author(s):  
Werner J. A. Dahm ◽  
Paul E. Dimotakis

We present results from an experimental investigation of turbulent transport and molecular mixing of a Sc [Gt ] 1 conserved scalar in the fully developed self-similar far field of a steady, axisymmetric, momentum-driven, free turbulent jet issuing into a quiescent medium. Our experiments cover the axial range from the jet exit to 350 diameters downstream, and span the range of Reynolds numbers from 1500 to 20000. Flow visualizations of the scalar concentration field directly verify the presence of an underlying characteristic large-scale organization in the jet far field essentially consistent with a simplified conceptual picture proposed in an earlier study (Dahm & Dimotakis 1987). High-resolution imaging measurements of successive instantaneous scalar concentration profiles in the jet support the presence of such a large-scale organization and provide details of its implications for mixing. These results also establish the proper similarity scaling for the mean concentration in the jet far field and give the scaling constant on the jet centreline as 5.4. We also present conserved scalar concentration p.d.f.s throughout the jet far field, and introduce a chemical reaction method for measuring the p.d.f.s with potentially molecular resolution. The amount of unmixed ambient fluid that reaches the jet centreline is found to decrease with increasing Reynolds number over the range investigated. The distribution of mixed fluid compositions in the concentration p.d.f. also appears to change over this range of Reynolds numbers, indicating that some aspects of large Schmidt number mixing in the jet far field have not yet become Reynolds number independent.


1989 ◽  
Vol 200 ◽  
pp. 367-387 ◽  
Author(s):  
Andrew D. Cutler ◽  
James P. Johnston

The relaxation of a reattached turbulent boundary layer downstream of a wall fence has been investigated. The boundary layer has an adverse pressure gradient imposed upon it which is adjusted in an attempt to bring the boundary layer into equilibrium. This is done by adjusting the pressure gradient so as to bring the Clauser parameter (G) down to a value of about 11.4 and then maintain it constant. In the region from the reattachment point to 2 or 3 reattachment lengths downstream, the boundary layer recovers from the initial major effects of reattachment. Farther downstream (where G is constant) the pressure-gradient parameter changes very slowly and profiles of non-dimensionalized eddy viscosity appear self-similar. However, pressure gradient and eddy viscosity are both roughly twice as large as expected on the basis of previous studies of equilibrium turbulent boundary layers. It is not known whether equilibrium has been achieved in this downstream region. This is another illustration of the great sensitivity of boundary-layer structure to perturbations.


1986 ◽  
Vol 29 (11) ◽  
pp. 3612 ◽  
Author(s):  
L. W. B. Browne ◽  
R. A. Antonia ◽  
D. K. Bisset

Sign in / Sign up

Export Citation Format

Share Document