Mechanical properties of the skeletal structure for UAV morphing wing by using CFRP with applying the electrodeposition resin molding method

2022 ◽  
Author(s):  
Kazuaki Katagiri ◽  
Choong Sik Park ◽  
Sonomi Kawakita ◽  
Daekwi Kim ◽  
Masato Tamayama ◽  
...  
2011 ◽  
Vol 8 (2) ◽  
pp. 551-560
Author(s):  
Baghdad Science Journal

In this study, composite materials were prepared using unsaturated polyester resin as binder with two types of fillers (sawdust and chopped reeds). The molding method is used to prepare sheets of UPE / sawdust composite and UPE / chopped reeds composite. The mechanical properties were studied including flexural strength and Young's modulus for the samples at normal conditions (N.C). The Commercial wood, UPE and its composite samples were immersed in water for about 30 days to find the weight gain (Mt%) of water for the samples, also to find the effect of water on their flexural strength and Young's modulus. The results showed that the samples of UPE / chopped reeds composite gained highest values of flexural strength (24.5 MPa) and Young's modulus (5.1 GPa) as compared with other composites at (N.C). The results showed that the wet samples of sawdust composite have lowest values of weight gain (Mt %) of water (0.043%) as compared with other composites after immersion. Also it’s showed a slight decrease in values of Young's modulus for all the samples after immersion as compared with the samples at (N.C). Finally it’s showed a slight decrease in values of flexural strength for all the samples except for the composite material formed from UPE / chopped reeds which showed an increase in the value of flexural strength after immersion, where the wet samples of UPE / chopped reeds composite gained (29 MPa) as compared with the samples at (N.C).


2014 ◽  
Vol 69 (6) ◽  
Author(s):  
A. Mataram

Polypropylene (PP) including a type of plastic which ranks second on the most number of types of plastic waste after the type of High Density Polyethylene (HDPE). Glass fibers have superior mechanical properties of natural fibers. Because it has good mechanical properties, glass fibers currently plays an important role in the use of composite reinforcement. Mechanical properties of glass fiber owned and PP waste in environmental conditions that more conditions, it can be utilized as a composite reinforcement and matrix materials. This research was conducted by of injection molding method. The comparison between the volume fraction of the glass fiber matrix of type PP plastic waste with variation 0% fibers 100% matrixs, 10% fibers 90% matrixs, 20% fibers 80% matrixs, 30% fibers 70% matrixs, 40% fibers 60% matrixs, and 50 % fibers 50% matrixs. The optimum conditions obtained in this study was the comparison of variation occurs in 50% fibers volume fractions of 50% matrixs were: tensile stress was 24.30 N/mm2, tensile strain was 13.60%.


2010 ◽  
Vol 37-38 ◽  
pp. 1092-1100
Author(s):  
Ji Bin Li ◽  
Ke Ke Xu ◽  
Xin Bo Lin ◽  
Xiao Yu Wu ◽  
Guo Li Gao

In this paper, ultrasonic vibration is adopted and exerted on injection molding in order to improve plastics’ forming ability, and the impact testing is used to analyze different injection parts’ mechanical properties. On the one hand, experiments prove that ultrasonic vibration can increase polymer’s melt flow rate, decrease melt viscosity, and improve injection flowing in mould cavity. On the other hand, the mechanical tests prove that the ultrasonic vibration can improve plastics’ tensile strength, elastic modulus and other mechanical properties. As a result, a weldless ultrasound-assisted injection molding method is recommended.


2010 ◽  
Vol 129-131 ◽  
pp. 1059-1063 ◽  
Author(s):  
Alias Mohd Saman ◽  
Abdul Halim Abdullah ◽  
Mohd Asri Mohd Nor ◽  
Mohd Hasbullah Idris

Mechanical properties of ductile iron casting are strongly inclined with metal matrix microstructure, graphite elements presence and impurities rate. Increasing in the number of graphite elements near to sphere shape (nodule), more superior mechanical properties will be realized. Automotive castings normally produced in mass production due to high demand; vertical moulding configuration is one of the best options for producing mass quantity automotive castings. This study aim to discover either the vertical moulding configuration will affects the nodularity properties distribution for different cavity position in the mold. In this study, ductile iron disc brake castings have been produced by in-mold Mg treatment using vertical parted molding method. Samples from different cavity position were taken and analyzed their nodularity distribution. Image processing computer procedure-Lieca was used to characterize the graphite morphology of the samples. The result shows that the different cavity position of vertical orientation disc brake casting produced dissimilar distribution of graphite. Higher position of cavity has higher nodule count and round graphite.


2007 ◽  
Vol 26-28 ◽  
pp. 19-22
Author(s):  
Midori Komada ◽  
Yoshikazu Kuroda ◽  
Ryo Murakami ◽  
Noriyuki Tsuchida ◽  
Yasunori Harada ◽  
...  

Microstructure and mechanical properties of high nitrogen steels whose chemical composition were Fe-17Cr-12Mn-3Mo and that was produced by using metal injection molding method and nitrogen absorption methods were examined. A compact which is furnace cooled from 1573 K has a brittle surface layer with high chromium and nitrogen contents but the surface layer disappears when the compact is held at 1473 K. The compact which is furnace cooled at 1473 K is observed precipitates in the grains and the grain boundary, while the compact which is quenched at 1473 K shows homogeneous microstructure. In the heat treatments at 1473 K for 2, 5, and 10 h, the nitrogen content becomes higher with increasing of holding time. In the holding times of 5 and 10 h, the microstructure is austenite. In the tensile tests, tensile strength becomes larger with increasing of nitrogen content. In the specimen which is conducted the heat treatment at 1473 K for 10 h, tensile strength is about 1,000 MPa and elongation is 80 %, which shows better balance of strength and elongation than SUS304 and SUS316 steels.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3159-3170
Author(s):  
Fatma Bozkurt ◽  
Büşra Avci ◽  
Fatih Mengeloğlu

The potential utilization of melamine impregnated paper (MIP) waste in thermoplastic composites was investigated. Composites were also manufactured utilizing wood flour (WF) at the same filler rates for comparison. The composites were manufactured using a compression molding method. The effects of filler type and filler rate on the mechanical properties of low-density polyethylene (LDPE)-based composites were evaluated. Mechanical properties, such as tensile and flexural strengths, were determined in accordance with ASTM D638 (2001) and ASTM D790 (2003), respectively. Results showed that filler type and filler content had significant effects on all mechanical properties investigated. Both fillers improved all mechanical properties except for tensile strength and elongation at break of LDPE. In conclusion, MIP waste has a potential to be utilized in thermoplastic-based composite manufacturing and might generate some economic and environmental benefits.


: In general the natural fibers are taken out from the sources of animals and plants. In recent days the natural fibers play an important role in engineering applications like automotive, aerospace and marine industries due to abundant availability, less in cost and zero percentage environment harmless in nature. In this paper the investigation of various mechanical properties of hybrid reinforced composite (Palm fiber Basalt S-glass fiber) is been done on the fabricated samples. The different mechanical property includes tensile, hardness and impact tests etc... The fabrication comprises three layers of Palm and Basalt fibers outer laminated by two layers of S-glass fibers using injection molding method. From the various testing and investigation against the test sample it is been concluded that the fibers in the hybrid set took a major role in determining the important mechanical properties. Thus the fibers present in the hybrid composite increases the strength, stiffness and weight ratio of the composite materials. The various forms and structural analysis of the hybrid composite material are processed by using scanning electron microscope for attaining the better results and application basis


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 144 ◽  
Author(s):  
Young Min Choi ◽  
Yang Lae Lee ◽  
Eui Su Lim ◽  
Mojiz Abbas Trimzi ◽  
Seon Ae Hwangbo ◽  
...  

This study has been based on the examination of the characterization of ring-type lead zirconate titanate (PZT) ceramics for high-intensity focused ultrasonic dispersion system. The ring-type PZT ceramics were fabricated by the powder molding method. The mechanical properties, dielectric constant, and microstructure of the ceramics were investigated. Consequently, the density of the ceramics was increased with increasing forming pressure while the density of ceramics that were sintered at 1350 °C was decreased due to over-sintering. Furthermore, the mechanical properties were excellent at the higher forming pressure. The dielectric property of the ring-type PZT ceramics was not clearly influenced by the manufacturing and sintering conditions. The abnormal grain growth of the ceramics, however, could be prevented by a lower heating rate in addition to reducing the porosity.


Sign in / Sign up

Export Citation Format

Share Document