High-Speed Imaging and Laser Diagnostic Techniques in Auto-Igniting Environments at Atmospheric Pressure

2022 ◽  
Author(s):  
Jeremy C. Manus ◽  
Ignacio Trueba ◽  
Jeffrey A. Sutton
2011 ◽  
Vol 78 (5) ◽  
Author(s):  
Sidney Chocron ◽  
Trenton Kirchdoerfer ◽  
Nikki King ◽  
Christopher J. Freitas

Ballistic tests were performed on single-yarn, single-layer and ten-layer targets of Kevlar® KM2 (600 and 850 denier), Dyneema® SK-65 and PBO® (500 denier). The objective was to develop data for validation of numerical models so, multiple diagnostic techniques were used: (1) ultra-high speed photography, (2) high-speed video and (3) nickel-chromium wire technique. These techniques allowed thorough validation of the numerical models through five different paths. The first validation set was at the yarn level, where the transverse wave propagation obtained with analytical and numerical simulations was compared to that obtained in the experiments. The second validation path was at the single-layer level: the propagation of the pyramidal wave observed with the high speed camera was compared to the numerical simulations. The third validation consisted of comparing, for the targets with ten layers, the pyramid apex and diagonal positions from tests and simulations. The fourth validation, which is probably the most relevant, consisted of comparing the numerical and experimental ballistic limits. Finally for the fifth validation set, nickel-chromium wires were used to record electronically the waves propagating in the fabrics. It is shown that for the three materials the waves recorded during the tests match well the waves predicted by the numerical model.


2012 ◽  
Vol 443-444 ◽  
pp. 986-995 ◽  
Author(s):  
Yu Liu ◽  
Jun Li ◽  
Ying Gao ◽  
Xin Mei Yuan

. In this paper, blends of butanol-biodiesel-diesel were tested inside a constant volume chamber to investigate liquid spray and combustion of the fuels. With high-speed camera and synchronized copper vapor laser, spray penetration during injection is recorded since it has a higher light reflectivity. Various ambient temperatures and fuel composition were investigated. There is a sudden drop in spray penetration at 800 K and 900 K, but not at 1000 K and 1200 K. When the spray penetration of the butanol-biodiesel-diesel blends is compared to that of the biodiesel-diesel blends, under non-combusting environment, a sudden drop in spray penetration length is also observed at 1100 K. High speed imaging shows that, for the non-combusting case, at 1100 K, the tip of the spray jet erupts into a plume sometime after injection for the butanol-biodiesel-diesel blend. The same is not seen with the biodiesel-diesel blend, neither at lower ambient temperature of 900 K. It is concluded that micro-explosion can occurs under particular conditions for the butanol-biodiesel-diesel blend, and the results is consistent with previous study in the literature.


2014 ◽  
Vol 34 (4) ◽  
pp. 853-869 ◽  
Author(s):  
M. Boselli ◽  
V. Colombo ◽  
E. Ghedini ◽  
M. Gherardi ◽  
R. Laurita ◽  
...  

2010 ◽  
Vol 649 ◽  
pp. 399-427 ◽  
Author(s):  
A. B. SWANTEK ◽  
J. M. AUSTIN

The interaction of an array of voids collapsing after passage of a stress wave is studied as a model problem relevant to porous materials, for example, to energy localization leading to hotspot formation in energetic materials. Dynamic experiments are designed to illuminate the hydrodynamic processes of collapsing void interactions for eventual input into device-scale initiation models. We examine a stress wave loading representative of accidental mechanical insult, for which the wave passage length scale is comparable with the void and inter-void length scales. A single void, two-void linear array, and a four-void staggered array are studied. Diagnostic techniques include high-speed imaging of cylindrical void collapse and the first particle image velocimetry measurements in the surrounding material. Voids exhibit an asymmetrical collapse process, with the formation of a high-speed internal jet. Volume and diameter versus time data for single void collapse under stress wave loading are compared with literature results for single voids under shock-wave loading. The internal volume history does not fall on a straight line and is in agreement with simulations, but in contrast to existing linear experimental data fits. The velocity field induced in the surrounding material is measured to quantify a region of influence at selected stages of single void collapse. In the case of multiple voids, the stress wave diffracts in response to the presence of the upstream void, affecting the loading condition on the downstream voids. Both collapse-inhibiting (shielding) and collapse-triggering effects are observed.


2019 ◽  
Vol 47 (3) ◽  
pp. 196-210
Author(s):  
Meghashyam Panyam ◽  
Beshah Ayalew ◽  
Timothy Rhyne ◽  
Steve Cron ◽  
John Adcox

ABSTRACT This article presents a novel experimental technique for measuring in-plane deformations and vibration modes of a rotating nonpneumatic tire subjected to obstacle impacts. The tire was mounted on a modified quarter-car test rig, which was built around one of the drums of a 500-horse power chassis dynamometer at Clemson University's International Center for Automotive Research. A series of experiments were conducted using a high-speed camera to capture the event of the rotating tire coming into contact with a cleat attached to the surface of the drum. The resulting video was processed using a two-dimensional digital image correlation algorithm to obtain in-plane radial and tangential deformation fields of the tire. The dynamic mode decomposition algorithm was implemented on the deformation fields to extract the dominant frequencies that were excited in the tire upon contact with the cleat. It was observed that the deformations and the modal frequencies estimated using this method were within a reasonable range of expected values. In general, the results indicate that the method used in this study can be a useful tool in measuring in-plane deformations of rolling tires without the need for additional sensors and wiring.


2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Ricardo Gobato ◽  
Alireza Heidari

An “explosive extratropical cyclone” is an atmospheric phenomenon that occurs when there is a very rapid drop in central atmospheric pressure. This phenomenon, with its characteristic of rapidly lowering the pressure in its interior, generates very intense winds and for this reason it is called explosive cyclone, bomb cyclone. With gusts recorded of 116 km/h, atmospheric phenomenon – “cyclone bomb” (CB) hit southern Brazil on June 30, the beginning of winter 2020, causing destruction in its influence over. One of the cities most affected was Chapecó, west of the state of Santa Catarina. The satellite images show that the CB generated a low pressure (976 mbar) inside it, generating two atmospheric currents that moved at high speed. In a northwest-southeast direction, Bolivia and Paraguay, crossing the states of Parana and Santa Catarina, and this draft that hit the south of Brazil, which caused the destruction of the affected states.  Another moving to Argentina, southwest-northeast direction, due to high area of high pressure (1022 mbar). Both enhanced the phenomenon.


Sign in / Sign up

Export Citation Format

Share Document