Design, Analyses, and Flutter Testing of the Active Aeroelastic Aircraft Testbed (A3TB) Platform

2022 ◽  
Author(s):  
Tsoof Joels ◽  
Noam Yechieli ◽  
Lucy Edery-Azulay ◽  
Daniella E. Raveh
2010 ◽  
Vol 85 (7-9) ◽  
pp. 1133-1138 ◽  
Author(s):  
U. Fischer ◽  
P. Pereslavtsev ◽  
D. Grosse ◽  
V. Weber ◽  
A. Li Puma ◽  
...  
Keyword(s):  

2021 ◽  
Vol 107 ◽  
pp. 203-208
Author(s):  
Ogheneruona E. Diemuodeke ◽  
Michael Orji ◽  
Clinton Ikechukwu ◽  
Yacob Mulugetta ◽  
Youba Sokona ◽  
...  

This paper presents solar PV electric cooking systems to fill the gap of clean energy stove demand in Africa and in particular in rural communities. The design analyses of four different solar PV electric cooking configurations, based on resistive burner and induction burner, are presented. The levelised cost of energy (LCOE) of the solar PV induction e-cooking, with battery storage, is 0.39 $/kWh. Sensitivity analysis was done to ascertain the affordability range of solar PV e-cooking. It was shown that the combination of the reduced cost of investment and good sunshine would most likely make the solar PV induction e-cooking competitive. However, the acceptability of the solar PV induction cooking will require addressing some important technical, economic, policy and socio-cultural related barriers.


1983 ◽  
Vol 20 (3) ◽  
pp. 208-215 ◽  
Author(s):  
W.A. Rogers ◽  
W.W. Braymen ◽  
M.H. Shirk

2021 ◽  
Author(s):  
Thomas Marcher ◽  
Georg Erharter ◽  
Paul Unterlass

Digitalization changes the design and operational processes in tunnelling. The way of gathering geological data in the field of tunnelling, the methods of rock mass classification as well as the application of tunnel design analyses, tunnel construction processes and tunnel maintenance will be influenced by this digital transformation. The ongoing digitalization in tunnelling through applications like building information modelling and artificial intelligence, addressing a variety of difficult tasks, is moving forward. Increasing overall amounts of data (big data), combined with the ease to access strong computing powers, are leading to a sharp increase in the successful application of data analytics and techniques of artificial intelligence. Artificial Intelligence now arrives also in the fields of geotechnical engineering, tunnelling and engineering geology. The chapter focuses on the potential for machine learning methods – a branch of Artificial Intelligence - in tunnelling. Examples will show that training artificial neural networks in a supervised manner works and yields valuable information. Unsupervised machine learning approaches will be also discussed, where the final classification is not imposed upon the data, but learned from it. Finally, reinforcement learning seems to be trendsetting but not being in use for specific tunnel applications yet.


1973 ◽  
Vol 13 (03) ◽  
pp. 163-174
Author(s):  
Alexander Blake ◽  
Maurice Zaslawsky

Abstract Presented here are results of experimental and theoretical investigations of the behavior of downhole pipe, surrounded by Overton sand or gravel, when subjected to shock from nuclear explosion. The principal effects investigated arelongitudinal friction between the pipe and the stemming material andresistance offered by the stemming material to transverse motion of the pipe. Introduction Stemming materials such as Overton sand and pea gravel are widely used in underground nuclear pea gravel are widely used in underground nuclear testing to ensure containment of the explosion. Present-day theories of mechanics suitable for predicting stresses and displacements within an predicting stresses and displacements within an array of particles of such materials are rather limited because of the stress-strain-time behavior and complicated boundary conditions involved. Thus, measurements representing gross effects only and linearized models of analysis must be relied upon in making the majority of engineering decisions where soil-structure interactions are encountered. Furthermore, because of the number of variables and hardware constraints present in designing deep-hole emplacement systems, the emphasis should be on obtaining experimental data on fullscale or nearly full-scale structural components in association with stemming materials of actual field quality. The experiment discussed in this paper was directed toward the development of basic mechanical properties such as modulus of elasticity, friction characteristics during axial (longitudinal) pipe motion through stemming materials, resistance pipe motion through stemming materials, resistance of stemming materials to transverse pipe displacement, and related physical phenomena that may have further bearing on the usual mechanical properties employed in various design analyses. properties employed in various design analyses. During evaluation of the basic mechanical properties, an attempt was made to develop a properties, an attempt was made to develop a Poisson's ratio type of data for the stemming Poisson's ratio type of data for the stemming materials at hand by using both specialized equipment and standard test equipment normally employed in soil mechanics. The results of the study, however, should be interpreted with due regard to the particulate nature of stemming materials, which do not represent a continuum with well defined stress-strain relationships. To obtain meaningful data on friction and transverse resistance characteristics, a special test rig was designed with particular emphasis on minimizing the scale effects and experimental errors usually encountered. In mechanics the term "friction" is the resistance to motion of two moving objects or surfaces that touch. In this paper we speak of several different types of micron, and therefore some clarification is needed. The friction between sand or gravel and the down-hole pipe as we attempt to move the pipe is one type of friction. A similar type is the friction developed between sand or gravel and the steel block it rubs against in the direct shear test apparatus. Those two examples of friction are rather straightforward, however, the following two present some confusion because they are both referred to as internal friction:Internal friction as used by engineering scientists, physicists, and metallurgists may be defined as the conversion of the mechanical energy of a vibrating solid into heat. This is also referred to as the damping capacity and corresponds to a phase difference between the applied stress and phase difference between the applied stress and its resultant strain.b soil mechanics the concept of internal friction corresponds to friction between the surfaces of individual grains of sand or gravel. In granular materials, both kinds of internal friction occur. In this paper the term "internal friction" is referred to extensively and is used exclusively in the sense of friction between particles. particles. FUNDAMENTALS OF SOIL MECHANICS The mechanical behavior of earth materials such as sand or gravel can be described by suitable physical constants reflecting certain physical constants reflecting certain stress-deformation relations that may then be applied in customary engineering predictions. In dealing with the rigidity of rocks, Young's modulus, E, and Poisson's ratio, are commonly used, and soil Poisson's ratio, are commonly used, and soil mechanics utilizes basic concepts of the theory of elasticity. By analogy to this well established practice, related concepts utilizing elastic practice, related concepts utilizing elastic constants in loading and unloading can be made applicable to stemming materials. SPEJ P. 163


2017 ◽  
Vol 9 (3) ◽  
pp. 364-371 ◽  
Author(s):  
Shigehiro Oishi ◽  
Florian Kohlbacher ◽  
Hyewon Choi

Does a major natural disaster change life satisfaction? This study is a rare natural experiment, in which roughly half of the respondents completed the survey before and the other half completed it after the Great East Japan Earthquake of March 11, 2011. A series of regression discontinuity design analyses showed that those who completed the survey after the earthquake reported being less satisfied with their lives than those who happened to complete the survey before the earthquake. There were no discontinuity on demographic variables and other consumer attitudes. The main findings remained virtually unchanged when we controlled for Big Five personality traits and demographic variables. Together, the current findings suggest that the experience of a major natural disaster changes their life satisfaction at least in the short run.


1980 ◽  
Vol 47 (3_suppl) ◽  
pp. 1155-1159 ◽  
Author(s):  
John Collins ◽  
Maryellen Reardon ◽  
L. K. Waters

Ratings of interest and perceived personal success in the masculine stereotyped occupation of lawyer were obtained from 112 male and 112 female college students in a 2 (sex of respondent) × 4 (percentage of females projected to be in the occupation) × 3 (sex-role orientation) design. Analyses indicated (a) the manipulation of percentage of females influenced occupational interest for male students and (b) sex-role orientation influenced interest for males and perceived personal success for both male and female students. The results were discussed in reference to the stage of career planning of the students.


2014 ◽  
Vol 69 (7) ◽  
Author(s):  
Efi Afrizal ◽  
Jaswar Koto

An optimum procedure of hull form design for ice ship going “Double Acting Tanker” is introduced. The procedure orderly consist of hull form design, analyses of performance of a ship in open water and ice condition, maneuverability performance, ice loading effect on propeller and torsional shaft, and economical and environmental societies. In the present study, only two topics are mainly discussed, which are hull form design and then continued with performance analysis in ice condition and open water. For the hull form design the objective parameter are considered as follows; stem and the stern angles, upper and lower fore bulbous angles, entrance angles, and spreading angles. All those angles are investigated for both full loaded and ballast condition in ahead and astern. Special concern is needed for stern part due to existing propeller effect on ice breaking performance. The hull form is firstly investigated without installation of propeller to avoid the effect of pressure from propeller and then continued by installation of propeller to find the optimum propeller design and propeller immersion. Research in ice condition is compromised with open water. The optimum hull form, propeller design and propeller immersion is when the hull form gives better performance for both open water and ice condition. The selected hull form then is compared with existing DAT tanker “Tempera”.


Sign in / Sign up

Export Citation Format

Share Document