scholarly journals A priori error estimates for a discretized poro-elastic–elastic system solved by a fixed-stress algorithm

Author(s):  
Vivette Girault ◽  
Mary F. Wheeler ◽  
Tameem Almani ◽  
Saumik Dana

We consider a poro-elastic region embedded into an elastic non-porous region. The elastic displacement equations are discretized by a continuous Galerkin scheme, while the flow equations for the pressure in the poro-elastic medium are discretized by either a continuous Galerkin scheme or a mixed scheme. Since the overall system of equations is very large, a fixed-stress algorithm is used at each time step to decouple the displacement from the flow equations in the poro-elastic region. We prove a priori error estimates for the resulting Galerkin scheme as well as the mixed scheme, with the expected order of accuracy, provided the algorithm is sufficiently iterated at each time step. These theoretical results are confirmed by a numerical experiment performed with the mixed scheme. A complete analysis including a posteriori estimates for both the Galerkin and the mixed scheme has been done but is too long to appear here.

2019 ◽  
Vol 40 (4) ◽  
pp. 2584-2625 ◽  
Author(s):  
Hussain A Ibdah ◽  
Cecilia F Mondaini ◽  
Edriss S Titi

Abstract Our aim is to approximate a reference velocity field solving the two-dimensional Navier–Stokes equations (NSE) in the absence of its initial condition by utilizing spatially discrete measurements of that field, available at a coarse scale, and continuous in time. The approximation is obtained via numerically discretizing a downscaling data assimilation algorithm. Time discretization is based on semiimplicit and fully implicit Euler schemes, while spatial discretization (which can be done at an arbitrary scale regardless of the spatial resolution of the measurements) is based on a spectral Galerkin method. The two fully discrete algorithms are shown to be unconditionally stable, with respect to the size of the time step, the number of time steps and the number of Galerkin modes. Moreover, explicit, uniform-in-time error estimates between the approximation and the reference solution are obtained, in both the $L^2$ and $H^1$ norms. Notably, the two-dimensional NSE, subject to the no-slip Dirichlet or periodic boundary conditions, are used in this work as a paradigm. The complete analysis that is presented here can be extended to other two- and three-dimensional dissipative systems under the assumption of global existence and uniqueness.


Author(s):  
YANG LIU ◽  
HONG LI ◽  
SIRIGULENG HE ◽  
ZHICHAO FANG ◽  
JINFENG WANG

In this paper, a new numerical method based on a new expanded mixed scheme and the characteristic method is developed and discussed for Sobolev equation with convection term. The hyperbolic part [Formula: see text] is handled by the characteristic method and the diffusion term ∇ ⋅ (a(x, t)∇u+b(x, t)∇ut) is approximated by the new expanded mixed method, whose gradient belongs to the simple square integrable (L2(Ω))2 space instead of the classical H( div ; Ω) space. For a priori error estimates, some important lemmas based on the new expanded mixed projection are introduced. An optimal priori error estimates in L2-norm for the scalar unknown u and a priori error estimates in (L2)2-norm for its gradient λ, and its flux σ (the coefficients times the negative gradient) are derived. In particular, an optimal priori error estimate in H1-norm for the scalar unknown u is obtained.


Author(s):  
Sethuramalingam Subbarayalu ◽  
Lonny L. Thompson

hp-Adaptive time-discontinuous Galerkin methods are developed for second-order hyperbolic systems. Explicit a priori error estimates in terms of time-step size, approximation order, and solution regularity are derived. Knowledge of these a priori convergence rates in combination with a posteriori error estimates computed from the jump in time-discontinuous solutions are used to automatically select time-step size h and approximation order p to achieve a specified error tolerance with a minimal number of total degrees-of-freedom. We show that the temporal jump error is a good indicator of the local error, and the summation of jump error for the total interval is good indicator for the global and accumulation errors. In addition, the accumulation error at the end of a time-step can be estimated well by the summation of the local jump error at the beginning of a time-step provided the approximation order is greater or equal to the solution regularity. Superconvergence of the end points of a time-step for high-order polynomials are also demonstrated.


2021 ◽  
Vol 11 (4) ◽  
pp. 1399
Author(s):  
Jure Oder ◽  
Cédric Flageul ◽  
Iztok Tiselj

In this paper, we present uncertainties of statistical quantities of direct numerical simulations (DNS) with small numerical errors. The uncertainties are analysed for channel flow and a flow separation case in a confined backward facing step (BFS) geometry. The infinite channel flow case has two homogeneous directions and this is usually exploited to speed-up the convergence of the results. As we show, such a procedure reduces statistical uncertainties of the results by up to an order of magnitude. This effect is strongest in the near wall regions. In the case of flow over a confined BFS, there are no such directions and thus very long integration times are required. The individual statistical quantities converge with the square root of time integration so, in order to improve the uncertainty by a factor of two, the simulation has to be prolonged by a factor of four. We provide an estimator that can be used to evaluate a priori the DNS relative statistical uncertainties from results obtained with a Reynolds Averaged Navier Stokes simulation. In the DNS, the estimator can be used to predict the averaging time and with it the simulation time required to achieve a certain relative statistical uncertainty of results. For accurate evaluation of averages and their uncertainties, it is not required to use every time step of the DNS. We observe that statistical uncertainty of the results is uninfluenced by reducing the number of samples to the point where the period between two consecutive samples measured in Courant–Friedrichss–Levy (CFL) condition units is below one. Nevertheless, crossing this limit, the estimates of uncertainties start to exhibit significant growth.


2020 ◽  
Vol 28 (5) ◽  
pp. 659-676
Author(s):  
Dinh Nho Hào ◽  
Nguyen Van Duc ◽  
Nguyen Van Thang ◽  
Nguyen Trung Thành

AbstractThe problem of determining the initial condition from noisy final observations in time-fractional parabolic equations is considered. This problem is well known to be ill-posed, and it is regularized by backward Sobolev-type equations. Error estimates of Hölder type are obtained with a priori and a posteriori regularization parameter choice rules. The proposed regularization method results in a stable noniterative numerical scheme. The theoretical error estimates are confirmed by numerical tests for one- and two-dimensional equations.


2020 ◽  
Vol 85 (2) ◽  
Author(s):  
R. Abgrall ◽  
J. Nordström ◽  
P. Öffner ◽  
S. Tokareva

AbstractIn the hyperbolic community, discontinuous Galerkin (DG) approaches are mainly applied when finite element methods are considered. As the name suggested, the DG framework allows a discontinuity at the element interfaces, which seems for many researchers a favorable property in case of hyperbolic balance laws. On the contrary, continuous Galerkin methods appear to be unsuitable for hyperbolic problems and there exists still the perception that continuous Galerkin methods are notoriously unstable. To remedy this issue, stabilization terms are usually added and various formulations can be found in the literature. However, this perception is not true and the stabilization terms are unnecessary, in general. In this paper, we deal with this problem, but present a different approach. We use the boundary conditions to stabilize the scheme following a procedure that are frequently used in the finite difference community. Here, the main idea is to impose the boundary conditions weakly and specific boundary operators are constructed such that they guarantee stability. This approach has already been used in the discontinuous Galerkin framework, but here we apply it with a continuous Galerkin scheme. No internal dissipation is needed even if unstructured grids are used. Further, we point out that we do not need exact integration, it suffices if the quadrature rule and the norm in the differential operator are the same, such that the summation-by-parts property is fulfilled meaning that a discrete Gauss Theorem is valid. This contradicts the perception in the hyperbolic community that stability issues for pure Galerkin scheme exist. In numerical simulations, we verify our theoretical analysis.


2016 ◽  
Vol 57 ◽  
pp. 139-144
Author(s):  
Tomás P. Barrios ◽  
Edwin Behrens ◽  
Rommel Bustinza

2016 ◽  
Vol 8 (2) ◽  
pp. 1
Author(s):  
Rola Ali Ahmad ◽  
Toufic El Arwadi ◽  
Houssam Chrayteh ◽  
Jean-Marc Sac-Epee

In this article we claim that we are going to give a priori and a posteriori error estimates for a Crank Nicolson type scheme. The problem is discretized by the finite elements in space. The main result of this paper consists in establishing two types of error indicators, the first one linked to the time discretization and the second one to the space discretization.


Sign in / Sign up

Export Citation Format

Share Document