scholarly journals BIG COFFEE VL.: SEED DESICCATION TOLERANCE, SIEVE CLASSIFICATION, AND PHYSIOLOGICAL QUALITY

2018 ◽  
Vol 13 (4) ◽  
pp. 510 ◽  
Author(s):  
ANA CRISTINA DE SOUZA ◽  
Sttela Dellyzete Veiga Franco Da Rosa ◽  
Amanda Lima Vilela ◽  
Madeleine Alves De Figueiredo ◽  
Ana Luiza De Oliveira Vilela ◽  
...  
Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 391 ◽  
Author(s):  
Natalia Wojciechowska ◽  
Shirin Alipour ◽  
Ewelina Stolarska ◽  
Karolina Bilska ◽  
Pascal Rey ◽  
...  

Norway maple and sycamore produce desiccation-tolerant (orthodox) and desiccation-sensitive (recalcitrant) seeds, respectively. Drying affects reduction and oxidation (redox) status in seeds. Oxidation of methionine to methionine sulfoxide (MetO) and reduction via methionine sulfoxide reductases (Msrs) have never been investigated in relation to seed desiccation tolerance. MetO levels and the abundance of Msrs were investigated in relation to levels of reactive oxygen species (ROS) such as hydrogen peroxide, superoxide anion radical and hydroxyl radical (•OH), and the levels of ascorbate and glutathione redox couples in gradually dried seeds. Peptide-bound MetO levels were positively correlated with ROS concentrations in the orthodox seeds. In particular, •OH affected MetO levels as well as the abundance of MsrB2 solely in the embryonic axes of Norway maple seeds. In this species, MsrB2 was present in oxidized and reduced forms, and the latter was favored by reduced glutathione and ascorbic acid. In contrast, sycamore seeds accumulated higher ROS levels. Additionally, MsrB2 was oxidized in sycamore throughout dehydration. In this context, the three elements •OH level, MetO content and MsrB2 abundance, linked together uniquely to Norway maple seeds, might be considered important players of the redox network associated with desiccation tolerance.


2011 ◽  
Vol 62 (15) ◽  
pp. 5267-5281 ◽  
Author(s):  
G. G. Franchi ◽  
B. Piotto ◽  
M. Nepi ◽  
C. C. Baskin ◽  
J. M. Baskin ◽  
...  

2000 ◽  
Vol 10 (3) ◽  
pp. 393-396 ◽  
Author(s):  
Nathalie Chabrillange ◽  
Stéphane Dussert ◽  
Florent Engelmann ◽  
Sylvie Doulbeau ◽  
Serge Hamon

AbstractLarge differences in seed desiccation sensitivity have been observed previously among ten coffee species (Coffea arabica, C. brevipes, C. canephora, C. eugenioides, C. humilis, C. liberica, C. pocsii, C. pseudo-zanguebariae, C. sessiliflora and C.stenophylla). Of these species,C. libericaandC. humiliswere the most sensitive to desiccation andC. pseudozanguebariaethe most tolerant. A study was carried out using the same seed lots to investigate if these differences in desiccation tolerance could be correlated with differences in soluble sugar content. Soluble sugars were extracted from dry seeds and analysed using high performance liquid chromatography. The seed monosaccharide (glucose and fructose) content was very low (1.5 to 2 mg g-1dry weight [dw]) in all species studied. The sucrose content ranged from 33 mg g-1dw inC. libericaseeds to 89 mg g-1dw in seeds ofC. pocsii. Raffinose was detected in the seeds of only five species (C.arabica, C.brevipes, C.humilis, C.sessiliflora, C.stenophylla), among which only three species (C.arabica, C.sessilifloraandC.brevipes) also contained stachyose. Both raffinose and stachyose were present in very low quantities (0.3–1.4 mg g-1dw and 0.1–0.7 mg g-1dw, respectively). Verbascose was never detected. No significant relationship was found between seed desiccation sensitivity and: (i) the sugar content; (ii) the presence/absence of oligosaccharides; and (iii) the oligosaccharide:sucrose ratio.


2020 ◽  
Vol 21 (10) ◽  
pp. 3612
Author(s):  
Hanna Kijak ◽  
Ewelina Ratajczak

Long-term seed storage is important for protecting both economic interests and biodiversity. The extraordinary properties of seeds allow us to store them in the right conditions for years. However, not all types of seeds are resilient, and some do not tolerate extreme desiccation or low temperature. Seeds can be divided into three categories: (1) orthodox seeds, which tolerate water losses of up to 7% of their water content and can be stored at low temperature; (2) recalcitrant seeds, which require a humidity of 27%; and (3) intermediate seeds, which lose their viability relatively quickly compared to orthodox seeds. In this article, we discuss the genetic bases for desiccation tolerance and longevity in seeds and the differences in gene expression profiles between the mentioned types of seeds.


2004 ◽  
Vol 91 (6) ◽  
pp. 863-870 ◽  
Author(s):  
Hugh W. Pritchard ◽  
Matthew I. Daws ◽  
Benjamin J. Fletcher ◽  
Christiane S. Gaméné ◽  
Heriel P. Msanga ◽  
...  

Proteomes ◽  
2017 ◽  
Vol 5 (4) ◽  
pp. 19 ◽  
Author(s):  
Matthieu Villegente ◽  
Philippe Marmey ◽  
Claudette Job ◽  
Marc Galland ◽  
Gwendal Cueff ◽  
...  

2019 ◽  
Vol 41 (1) ◽  
pp. 36522
Author(s):  
Joana Souza Fernandes ◽  
Renato Mendes Guimarães ◽  
Jose Marcio Rocha Faria ◽  
Diego De Sousa Pereira ◽  
Stefania Vilas Boas Coelho ◽  
...  

The aim of this study was to evaluate the physiological and biochemical changes related to the loss of desiccation tolerance in millet seeds. The points studied were determined according to the seed imbibition curve of the hybrid ADRF6010: control (0 h), 3 h, 1 and 3 mm of radicle. The seeds were dried on silica gel for 72 h at 20 °C, followed by pre-humidification at 25 °C for 24 h. The physiological quality was evaluated by the electrical conductivity and germination test, and the seed vigor through the first count and germination speed index. The experiment was performed in a completely randomized design and means were compared by the Scott-knott test at 5% probability. The enzymatic systems evaluated were: superoxide dismutase, catalase, peroxidase, and α-amylase, and the expression of heat-resistant proteins. The enzymatic activity was quantified through the software ImageJ®. Millet seeds lost desiccation tolerance when the radicle reaches 1 mm of length. According to the enzymatic standards, the enzymes peroxidase and α-amylase, as well as the activity of heat-resistant proteins are related to the loss of desiccation tolerance in millet seeds.


2018 ◽  
Vol 45 (11) ◽  
pp. 1083 ◽  
Author(s):  
Alexandre Marques ◽  
Gonda Buijs ◽  
Wilco Ligterink ◽  
Henk Hilhorst

Desiccation sensitive (DS) seeds do not survive dry storage due to their lack of desiccation tolerance. Almost half of the plant species in tropical rainforests produce DS seeds and therefore the desiccation sensitivity of these seeds represents a problem for and long-term biodiversity conservation. This phenomenon raises questions as to how, where and why DS (desiccation sensitive)-seeded species appeared during evolution. These species evolved probably independently from desiccation tolerant (DT) seeded ancestors. They adapted to environments where the conditions are conducive to immediate germination after shedding, e.g. constant and abundant rainy seasons. These very predictable conditions offered a relaxed selection for desiccation tolerance that eventually got lost in DS seeds. These species are highly dependent on their environment to survive and they are seriously threatened by deforestation and climate change. Understanding of the ecology, evolution and molecular mechanisms associated with seed desiccation tolerance can shed light on the resilience of DS-seeded species and guide conservation efforts. In this review, we survey the available literature for ecological and physiological aspects of DS-seeded species and combine it with recent knowledge obtained from DT model species. This enables us to generate hypotheses concerning the evolution of DS-seeded species and their associated genetic alterations.


Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1362
Author(s):  
Joanna Kijowska-Oberc ◽  
Aleksandra M. Staszak ◽  
Mikołaj K. Wawrzyniak ◽  
Ewelina Ratajczak

In the present study, we examined the utility of proline usage as a biochemical indicator of metabolic changes caused by climate change (mean temperature and precipitation) during seed development of two Acer species differing in desiccation tolerance: Norway maple (Acer platanoides L.—desiccation tolerant—orthodox) and sycamore (Acer pseudoplatanus L.—desiccation sensitive—recalcitrant). In plants, proline is an element of the antioxidant system, which has a role in response to water loss and high temperatures. Our study considered whether proline could be treated as an indicator of tree seed viability, crucial for genetic resources conservation. Proline content was measured biweekly in developing seeds (between 11 and 23 weeks after flowering) collected in consecutive years (2017, 2018, and 2019). We showed that proline concentrations in recalcitrant seeds were positively correlated with mean two-week temperature. In contrast, in orthodox seeds no such relationship was found. Proline content proved to be sensitive to thermal-moisture conditions changes, which makes it a promising biochemical marker of seed desiccation tolerance in different climatic conditions.


Sign in / Sign up

Export Citation Format

Share Document