scholarly journals PHIALOMYCES MACROSPORUS REDUCES CERCOSPORA COFFEICOLA SURVIVAL ON SYMPTOMATIC COFFEE LEAVES

2019 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
Marie Caroline Ferreira Laborde ◽  
Deila Magna dos Santos Botelho ◽  
Gabriel Alfonso Alvarez Rodriguez ◽  
Mário Lúcio Vilela de Resende ◽  
Marisa Vieira de Queiroz ◽  
...  

<p>Saprobe fungi and necrotrophic pathogens share the same niche within crop stubble and the search for fungi non-pathogenic to plants that are able to displace the plant pathogens from its overwintering substrate contributes to the disease management. Brown eye spot (<em>Cercospora coffeicola</em>) is among the most important coffee diseases, it is caused by a necrotrophic pathogen that has decaying leaves as its major source of inoculum. We have screened saprobe fungi for the ability to reduce <em>C. coffeicola</em> sporulation and viability and determined the possible mechanisms involved in the observed biocontrol. A selected saprobe fungus, <em>Phialomyces macrosporus</em>, reduced the pathogen’s viability by 40% both <em>in vitro</em> and <em>in vivo</em>. The fungus acts through antibiosis and competition for nutrients. It produced both volatile and non-volatile compounds that inhibited <em>C. coffeicola</em> growth, sporulation, and viability. It also produced the tissue maceration enzyme (polygalacturonase), which reduces the pathogen both in detached leaves or in planta. The reduction in the fungal viability either by the saprobe fungus or its polygalacturonase-fraction supernatant resulted in the reduction of the disease rate. Therefore, <em>P. macrosporus </em>is a potential microbial agent that can be used in an integrated management of brown eye spot through the reduction of the initial inoculum of the pathogen that survives and builds up in infected leaves.</p><p> </p>

Plant Disease ◽  
2008 ◽  
Vol 92 (10) ◽  
pp. 1439-1443 ◽  
Author(s):  
Adalberto C. Café-Filho ◽  
Jean Beagle Ristaino

Despite the wide adoption of mefenoxam (Ridomil Gold EC) for vegetables in North Carolina, the incidence of Phytophthora blight on pepper (Capsicum annuum) and squash (Cucurbita pepo) is high. Seventy-five isolates of Phytophthora capsici were collected in five pepper and one squash field in order to assess mefenoxam sensitivity. The relative fitness of resistant and sensitive isolates was contrasted in vitro by their respective rates of colony growth and their ability to produce sporangia in unamended V8 juice agar medium. In in vivo experiments, the aggressiveness of isolates on pepper was evaluated. The frequency of resistant isolates in North Carolina populations was 63%, considerably higher than resistance levels in areas where mefenoxam is not widely adopted. Resistant isolates grew on amended media at rates >80 to 90% and >100% of the nonamended control at 100 μg ml-1 and 5 μg ml-1, respectively. Sensitive isolates did not growth at 5 or 100 μg ml-1. All isolates from three fields, including two pepper and a squash field, were resistant to mefenoxam. Populations from other fields were composed of either mixes of sensitive and resistant isolates or only sensitive isolates. Response to mefenoxam remained stable during the course of in vitro and in planta experiments. Occurrence of a mefenoxam-resistant population of P. capsici on squash is reported here for the first time in North Carolina. When measured by rate of colony growth, sporulation in vitro, or aggressiveness in planta, fitness of resistant isolates was not reduced. Mefenoxam-resistant isolates from squash were as aggressive on pepper as sensitive or resistant pepper isolates. These results suggest that mefenoxam-resistant populations of P. capsici are as virulent and fit as sensitive populations.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6905 ◽  
Author(s):  
Elena Maria Colombo ◽  
Cristina Pizzatti ◽  
Andrea Kunova ◽  
Claudio Gardana ◽  
Marco Saracchi ◽  
...  

Biocontrol microorganisms are emerging as an effective alternative to pesticides. Ideally, biocontrol agents (BCAs) for the control of fungal plant pathogens should be selected by an in vitro method that is high-throughput and is predictive of in planta efficacy, possibly considering environmental factors, and the natural diversity of the pathogen. The purpose of our study was (1) to assess the effects ofFusariumstrain diversity (N= 5) and culture media (N= 6) on the identification of biological control activity ofStreptomycesstrains (N= 20) againstFusariumpathogens of wheat in vitro and (2) to verify the ability of our in vitro screening methods to simulate the activity in planta. Our results indicate that culture media,Fusariumstrain diversity, and their interactions affect the results of an in vitro selection by dual culture assay. The results obtained on the wheat-based culture media resulted in the highest correlation score (r= 0.5) with the in planta root rot (RR) inhibition, suggesting that this in vitro method was the best predictor of in planta performance of streptomycetes against Fusarium RR of wheat assessed as extension of the necrosis on the root. Contrarily, none of the in vitro plate assays using the media tested could appropriately predict the activity of the streptomycetes against Fusarium foot rot symptoms estimated as the necrosis at the crown level. Considering overall data of correlation, the activity in planta cannot be effectively predicted by dual culture plate studies, therefore improved in vitro methods are needed to better mimic the activity of biocontrol strains in natural conditions. This work contributes to setting up laboratory standards for preliminary screening assays ofStreptomycesBCAs against fungal pathogens.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2393
Author(s):  
Xiuping Wang ◽  
Fei Peng ◽  
Caihong Cheng ◽  
Lina Chen ◽  
Xuejuan Shi ◽  
...  

Plant pathogens constantly develop resistance to antimicrobial agents, and this poses great challenges to plant protection. Therefore, there is a pressing need to search for new antimicrobials. The combined use of antimicrobial agents with different antifungal mechanisms has been recognized as a promising approach to manage plant diseases. Graphene oxide (GO) is a newly emerging and highly promising antimicrobial agent against various plant pathogens in agricultural science. In this study, the inhibitory activity of GO combined with fungicides (Mancozeb, Cyproconazol and Difenoconazole) against Fusarium graminearum was investigated in vivo and in vitro. The results revealed that the combination of GO and fungicides has significant synergistic inhibitory effects on the mycelial growth, mycelial biomass and spore germination of F. graminearum relative to single fungicides. The magnitude of synergy was found to depend on the ratio of GO and fungicide in the composite. In field tests, GO–fungicides could significantly reduce the disease incidence and disease severity, exhibiting a significantly improved control efficacy on F. graminearum. The strong synergistic activity of GO with existing fungicides demonstrates the great application potential of GO in pest management.


2020 ◽  
Vol 8 (10) ◽  
pp. 285-291
Author(s):  
Budy Rahmat ◽  
Dedi Natawijaya ◽  
Endang Surahman

Liquid smoke is known to contain compounds that can control plant disease pathogens. This study aims to produce wood-waste liquid smoke and determine its effectiveness as a fungicide on plant pathogens. This research was conducted in two experimental stages, namely: (i) in vitro test as a preliminary test of the effectiveness of teak waste liquid smoke at concentrations of 0, 0.5, 1, 1.5, 2, and 2.5%; and (ii) in vivo test was arranged in randomized block design consisting of seven levels of liquid smoke concentration, namely 0, 1, 2, 3, 4, 5, and 6%, each of which was repeated four times. The results showed that the pyrolysis of 1 kg of wood waste was produced with the proportions of liquid smoke, charcoal and tar, respectively: 312 mL, 31 g, 367 g and the uncondensed gases. Treatment of liquid smoke in the in vivo test showed that a concentration of 1 to 2.5% liquid smoke was able to suppress the growth of the pathogenic fungus Sclerotium rolfsii 100%. The treatment of liquid smoke in the in vivo test showed an effect on inhibition of the growth diameter of fungal colonies, suppressing the disease occurance, and suppressing the lesion diameter.


Pathogens ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 613
Author(s):  
Alfredo Ambrico ◽  
Mario Trupo ◽  
Rosaria Magarelli ◽  
Roberto Balducchi ◽  
Angelo Ferraro ◽  
...  

Several bacteria pathogens are responsible for plant diseases causing significant economic losses. The antibacterial activity of Dunaliella salina microalgae extracts were investigated in vitro and in vivo. First, biomass composition was chemically characterized and subjected to extraction using polar/non-polar solvents. The highest extraction yield was obtained using chloroform:methanol (1:1 v/v) equal to 170 mg g−1 followed by ethanol (88 mg g−1) and hexane (61 mg g−1). In vitro examination of hexane extracts of Dunaliella salina demonstrated antibacterial activity against all tested bacteria. The hexane extract showed the highest amount of β-carotene with respect to the others, so it was selected for subsequent analyses. In vivo studies were also carried out using hexane extracts of D. salina against Pseudomonas syringae pv. tomato and Pectobacterium carotovorum subsp. carotovorum on young tomato plants and fruits of tomato and zucchini, respectively. The treated young tomato plants exhibited a reduction of 65.7% incidence and 77.0% severity of bacterial speck spot disease. Similarly, a reduction of soft rot symptoms was observed in treated tomato and zucchini fruits with a disease incidence of 5.3% and 12.6% with respect to 90.6% and 100%, respectively, for the positive control.


2020 ◽  
Vol 13 (2) ◽  
pp. 247-258 ◽  
Author(s):  
A.D. Gong ◽  
G.J. Sun ◽  
Z.Y. Zhao ◽  
Y.C. Liao ◽  
J.B. Zhang

Controlling proliferation and aflatoxin production by Aspergillus flavus is a pressing challenge for global food safety and security. Marine bacterium Staphylococcus saprophyticus strain L-38 showed excellent antifungal activity toward A. flavus in vitro and in vivo. In sealed, non-contact confrontation assays, L-38 completely inhibited conidial germination and mycelial growth of A. flavus through the production of volatile organic compounds (VOCs). Gas chromatography-mass spectrometry identified 3,3-dimethyl-1,2-epoxybutane (3-DE) as the most abundant VOC (32.61% of total peak area, 78% matching). Exposure of A. flavus cultures to synthetic 3-DE similarly demonstrated strong inhibition of growth. Moreover, culture of L-38 in a sealed chamber with maize or peanuts artificially inoculated with A. flavus, at high water activity, resulted in significant inhibition of A. flavus germination and aflatoxin biosynthesis. Scanning electron microscopy of these samples revealed severe damage to conidial cells and hyphae compared to samples not exposed to L-38. L-38 also showed broad and effective antifungal activity toward eight other phytopathogenic fungi including Aspergillus niger, Fusarium verticillioides, Fusarium graminearum, Sclerotinia sclerotiorum, Rhizoctonia solani, Alternaria alternata, Monilinia fructicola, and Botrytis cinerea. This work introduces S. saprophyticus L-38 as a potential biocontrol agent and demonstrates the efficacy of the volatile 3-DE in the control of A. flavus and other destructive plant pathogens for post-harvest food safety.


1999 ◽  
Vol 43 (3) ◽  
pp. 639-646 ◽  
Author(s):  
Joan Gavaldà ◽  
Carmen Torres ◽  
Carmen Tenorio ◽  
Pedro López ◽  
Myriam Zaragoza ◽  
...  

The purpose of this work was to evaluate the in vitro possibilities of ampicillin-ceftriaxone combinations for 10 Enterococcus faecalis strains with high-level resistance to aminoglycosides (HLRAg) and to assess the efficacy of ampicillin plus ceftriaxone, both administered with humanlike pharmacokinetics, for the treatment of experimental endocarditis due to HLRAg E. faecalis. A reduction of 1 to 4 dilutions in MICs of ampicillin was obtained when ampicillin was combined with a fixed subinhibitory ceftriaxone concentration of 4 μg/ml. This potentiating effect was also observed by the double disk method with all 10 strains. Time-kill studies performed with 1 and 2 μg of ampicillin alone per ml or in combination with 5, 10, 20, 40, and 60 μg of ceftriaxone per ml showed a ≥2 log10 reduction in CFU per milliliter with respect to ampicillin alone and to the initial inoculum for all 10E. faecalis strains studied. This effect was obtained for seven strains with the combination of 2 μg of ampicillin per ml plus 10 μg of ceftriaxone per ml and for six strains with 5 μg of ceftriaxone per ml. Animals with catheter-induced endocarditis were infected intravenously with 108 CFU of E. faecalis V48 or 105 CFU of E. faecalisV45 and were treated for 3 days with humanlike pharmacokinetics of 2 g of ampicillin every 4 h, alone or combined with 2 g of ceftriaxone every 12 h. The levels in serum and the pharmacokinetic parameters of the humanlike pharmacokinetics of ampicillin or ceftriaxone in rabbits were similar to those found in humans treated with 2 g of ampicillin or ceftriaxone intravenously. Results of the therapy for experimental endocarditis caused by E. faecalis V48 or V45 showed that the residual bacterial titers in aortic valve vegetations were significantly lower in the animals treated with the combinations of ampicillin plus ceftriaxone than in those treated with ampicillin alone (P < 0.001). The combination of ampicillin and ceftriaxone showed in vitro and in vivo synergism against HLRAgE. faecalis.


2021 ◽  
Vol 166 ◽  
pp. 113465
Author(s):  
Duong Quang Pham ◽  
Hieu Trung Pham ◽  
Jae Woo Han ◽  
Tung Huu Nguyen ◽  
Huong Thanh Nguyen ◽  
...  

2007 ◽  
Vol 81 (23) ◽  
pp. 12979-12984 ◽  
Author(s):  
Purificación Carrasco ◽  
Francisca de la Iglesia ◽  
Santiago F. Elena

ABSTRACT Little is known about the fitness and virulence consequences of single-nucleotide substitutions in RNA viral genomes, and most information comes from the analysis of nonrandom sets of mutations with strong phenotypic effect or which have been assessed in vitro, with their relevance in vivo being unclear. Here we used site-directed mutagenesis to create a collection of 66 clones of Tobacco etch potyvirus, each carrying a different, randomly chosen, single-nucleotide substitution. Competition experiments between each mutant and the ancestral nonmutated clone were performed in planta to quantitatively assess the relative fitness of each mutant genotype. Among all mutations, 40.9% were lethal, and among the viable ones, 36.4% were significantly deleterious and 22.7% neutral. Not a single case of beneficial effects was observed within the level of resolution of our measures. On average, the fitness of a genotype carrying a deleterious but viable mutation was 49% smaller than that for its unmutated progenitor. Deleterious mutational effects conformed to a beta probability distribution. The virulence of a subset of viable mutants was assessed as the reduction in the number of viable seeds produced by infected plants. Mutational effects on virulence ranged between 17% reductions and 24.4% increases. Interestingly, the only mutations showing a significant effect on virulence were hypervirulent. Competitive fitness and virulence were uncorrelated traits.


2009 ◽  
Vol 76 (3) ◽  
pp. 769-775 ◽  
Author(s):  
Pey-Shynan Jan ◽  
Hsu-Yuang Huang ◽  
Hueih-Min Chen

ABSTRACT The cationic lytic peptide cecropin B (CB), isolated from the giant silk moth (Hyalophora cecropia), has been shown to effectively eliminate Gram-negative and some Gram-positive bacteria. In this study, the effects of chemically synthesized CB on plant pathogens were investigated. The S50s (the peptide concentrations causing 50% survival of a pathogenic bacterium) of CB against two major pathogens of the tomato, Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria, were 529.6 μg/ml and 0.29 μg/ml, respectively. The CB gene was then fused to the secretory signal peptide (sp) sequence from the barley α-amylase gene, and the new construct, pBI121-spCB, was used for the transformation of tomato plants. Integration of the CB gene into the tomato genome was confirmed by PCR, and its expression was confirmed by Western blot analyses. In vivo studies of the transgenic tomato plant demonstrated significant resistance to bacterial wilt and bacterial spot. The levels of CB expressed in transgenic tomato plants (∼0.05 μg in 50 mg of leaves) were far lower than the S50 determined in vitro. CB transgenic tomatoes could therefore be a new mode of bioprotection against these two plant diseases with significant agricultural applications.


Sign in / Sign up

Export Citation Format

Share Document