scholarly journals The Capacity to Restore Steady Gait After a Step Modification Is Reduced in People With Poststroke Foot Drop Using an Ankle-Foot Orthosis

2014 ◽  
Vol 94 (5) ◽  
pp. 654-663 ◽  
Author(s):  
Roos van Swigchem ◽  
Melvyn Roerdink ◽  
Vivian Weerdesteyn ◽  
Alexander C. Geurts ◽  
Andreas Daffertshofer

BackgroundA reduced capacity to modify gait to the environment may contribute to the risk of falls in people with poststroke foot drop using an ankle-foot orthosis.ObjectiveThis study aimed to quantify their capacity to restore steady gait after a step modification.DesignThis was a cross-sectional, observational study.MethodsNineteen people in the chronic phase (>6 months) after stroke (mean age=55.0 years, SD=10.1) and 20 people of similar age (mean age=54.6 years, SD=12.0) who were able-bodied were included. Participants were instructed to avoid obstacles that were suddenly released in front of the paretic leg (stroke group) or left leg (control group) while walking on a treadmill. Outcomes were success rates of obstacle avoidance as well as post-crossing step length, step duration, hip flexion angle at foot-strike, and peak hip extension of the steps measured within 10 seconds following obstacle release.ResultsSuccess rates of obstacle avoidance were lower for people poststroke. Moreover, their first post-crossing step length and duration (ie, the nonparetic step) deviated more from steady gait than those of people in the control group (ie, the right step), with lower values for people poststroke. Similar deviations were observed for post-crossing hip flexion and extension excursions.LimitationsPeople poststroke were relatively mildly impaired and used an ankle-foot orthosis, which may limit the generalizability of the results to other populations poststroke.ConclusionsPeople with poststroke foot drop using an ankle-foot orthosis had reduced gait adaptability, as evidenced by lower success rates of obstacle avoidance as well as an impaired capacity to restore steady gait after crossing an obstacle. The latter finding unveils their difficulty in incorporating step modifications in ongoing gait.

2012 ◽  
Vol 92 (3) ◽  
pp. 398-406 ◽  
Author(s):  
Roos van Swigchem ◽  
Hanneke J.R. van Duijnhoven ◽  
Jasper den Boer ◽  
Alexander C. Geurts ◽  
Vivian Weerdesteyn

Background Walking ability of people with foot drop in the chronic phase after stroke is better with functional electrical stimulation (FES) of the peroneal nerve than without an orthotic device. However, the literature is not conclusive on whether peroneal FES also is better than an ankle-foot orthosis (AFO) in this regard. Objective This study aimed to identify potential benefits of peroneal FES over an AFO with respect to the ability to negotiate a sudden obstacle. Design The study design was a within-subject comparison between FES and AFO using repeated measures. Methods Twenty-four community-dwelling people with stroke (mean age=52.6 years, SD=12.7) who regularly used a polypropylene AFO were fitted with a transcutaneous FES device. The participants' obstacle avoidance ability was tested after 2 and 8 weeks. They had to avoid 30 obstacles that were suddenly dropped on a treadmill in front of the affected leg while walking with either FES or an AFO. The obstacle avoidance success rates were determined. Results Success rates were higher with FES than with an AFO, especially after adjustment for individual leg muscle strength. Participants with relatively low muscle strength (Motricity Index score <64) were most likely to benefit from FES regarding obstacle avoidance ability. Limitation Further work is needed to determine whether the results may be generalized to other groups of people with stroke. Conclusions Peroneal FES seems to be superior to an AFO with regard to obstacle avoidance ability in community-dwelling people with stroke. The observed gains in obstacle avoidance ability appear to be clinically most relevant in the people with relatively low leg muscle strength.


2012 ◽  
Vol 37 (3) ◽  
pp. 212-221 ◽  
Author(s):  
Sumiko Yamamoto ◽  
Naoki Tomokiyo ◽  
Tadashi Yasui ◽  
Toshikazu Kawaguchi

Background: An ankle-foot orthosis with an oil damper was previously developed to assist the first rocker function during gait, but the effects of the amount of resistive moment generated on gait have not been clarified. Objectives: To measure the amount of resistive moment generated by the ankle-foot orthosis with an oil damper during gait and determine its effect on the gait of patients with stroke. Study Design: Preliminary cross-sectional study. Methods: The gait of four patients with stroke in the chronic phase was measured in four conditions: without an ankle-foot orthosis and with the ankle-foot orthosis with an oil damper generating three different amounts of resistive moment. Measurements were taken with a three-dimensional motion analysis system and a specially designed device to determine the resistive moment. Results: The resistive moment was observed in the former half in stance of the paretic limb, and its magnitude was less than 10 N m. Some gait parameters related to terminal stance and preswing were affected by the amount of resistive moment. The forward component of floor reaction force and the shank vertical angle showed peak values when the patients reported feeling most comfortable during gait. Conclusion: Although the resistive moment generated by the ankle-foot orthosis with an oil damper was small, it was sufficient to alter gait. Clinical relevance To maximize the effectiveness of ankle-foot orthoses, it is necessary to know the effects of resistive moment on the gait of patients with stroke. The ankle-foot orthosis with an oil damper assists the first rocker function in gait and also affects the gait in a later phase in stance. The peak values of some gait parameters coincided with patients reporting gait to be most comfortable. It is important to know that ankle-foot orthosis with an oil damper assistance in the first rocker alters the weight acceptance on the paretic limb and affects the gait parameters related to propulsion ability in stance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoo Jin Choo ◽  
Min Cheol Chang

AbstractWe conducted a meta-analysis to investigate the effectiveness of ankle–foot orthosis (AFO) use in improving gait biomechanical parameters such as walking speed, mobility, and kinematics in patients with stroke with gait disturbance. We searched the MEDLINE (Medical Literature Analysis and Retrieval System Online), CINAHL (Cumulative Index to Nursing and Allied Health Literature), Cochrane, Embase, and Scopus databases and retrieved studies published until June 2021. Experimental and prospective studies were included that evaluated biomechanics or kinematic parameters with or without AFO in patients with stroke. We analyzed gait biomechanical parameters, including walking speed, mobility, balance, and kinematic variables, in studies involving patients with and without AFO use. The criteria of the Cochrane Handbook for Systematic Reviews of Interventions were used to evaluate the methodological quality of the studies, and the level of evidence was evaluated using the Research Pyramid model. Funnel plot analysis and Egger’s test were performed to confirm publication bias. A total of 19 studies including 434 participants that reported on the immediate or short-term effectiveness of AFO use were included in the analysis. Significant improvements in walking speed (standardized mean difference [SMD], 0.50; 95% CI 0.34–0.66; P < 0.00001; I2, 0%), cadence (SMD, 0.42; 95% CI 0.22–0.62; P < 0.0001; I2, 0%), step length (SMD, 0.41; 95% CI 0.18–0.63; P = 0.0003; I2, 2%), stride length (SMD, 0.43; 95% CI 0.15–0.71; P = 0.003; I2, 7%), Timed up-and-go test (SMD, − 0.30; 95% CI − 0.54 to − 0.07; P = 0.01; I2, 0%), functional ambulation category (FAC) score (SMD, 1.61; 95% CI 1.19–2.02; P < 0.00001; I2, 0%), ankle sagittal plane angle at initial contact (SMD, 0.66; 95% CI 0.34–0.98; P < 0.0001; I2, 0%), and knee sagittal plane angle at toe-off (SMD, 0.39; 95% CI 0.04–0.73; P = 0.03; I2, 46%) were observed when the patients wore AFOs. Stride time, body sway, and hip sagittal plane angle at toe-off were not significantly improved (p = 0.74, p = 0.07, p = 0.07, respectively). Among these results, the FAC score showed the most significant improvement, and stride time showed the lowest improvement. AFO improves walking speed, cadence, step length, and stride length, particularly in patients with stroke. AFO is considered beneficial in enhancing gait stability and ambulatory ability.


2014 ◽  
Vol 46 (8) ◽  
pp. 768-772 ◽  
Author(s):  
F Menotti ◽  
L Laudani ◽  
A Damiani ◽  
P Orlando ◽  
A Macaluso

2021 ◽  
Author(s):  
IlHyun Son ◽  
GyuChang Lee

Abstract Background: It has been reported the effects of a hinged ankle-foot orthosis on the gait ability of children with cerebral palsy. However, no studies investigated the effects of the dorsiflexion angle of the hinged ankle-foot orthosis on the spatiotemporal gait parameters of children with cerebral palsy. This study aimed to investigate the immediate effects of a 10° dorsiflexion inducing ankle-foot orthosis the spatiotemporal gait parameters of children with spastic diplegia compared to barefoot and a hinged ankle-foot orthosis.Methods: This study was cross-over design. 10 children with spastic diplegia were walked with barefoot, a hinged ankle-foot orthosis, and a 10° dorsiflexion inducing ankle-foot orthosis. GAITRite was used to collect the spatiotemporal gait parameters including gait velocity, cadence, step length, stride length, single leg support, and double leg support. Results: It showed that a 10° dorsiflexion inducing ankle-foot orthosis significantly improved the gait velocity, cadence, step length, stride length, single leg support, and double leg support than barefoot and a hinged ankle-foot orthosis (p<.05). Conclusion: The results of this study implied that a 10° dorsiflexion inducing ankle-foot orthosis could improve the gait ability of children with spastic diplegia more than barefoot or a hinged ankle-foot orthosis. High quality future studies will need to examine the effects of hinged ankle-foot orthosis on gait ability according to dorsiflexion angles.


2020 ◽  
Vol 26 (10) ◽  
pp. 1677-1685 ◽  
Author(s):  
Harish Kumar Banga ◽  
Parveen Kalra ◽  
Rajendra M. Belokar ◽  
Rajesh Kumar

Purpose The purpose of this study is improvement of human gait by customized design of ankle foot orthosis (AFO). An has been the most frequently used orthosis in children with cerebral palsy. AFOs are designed to boost existing features or to avoid depression or traumatize muscle contractures. The advantages of AFO’s utilized for advancement in human walk attributes for the improvement in foot deformities patients or youngsters with spastic loss of motion. In this research on the customized design of AFO's to improve gait, there are limitations during walking of foot drop patients. In children with foot drops, specific AFOs were explicitly altered to improve parity and strength which are beneficial to walking positions. Design/methodology/approach This study proposes the customized design of AFOs using computerized and additive manufacturing for producing advances to alter the design and increase comfort for foot drop patients. Structuring the proposed design fabricated by using additive manufacturing and restricted material, the investigation was finalized at the Design Analysis Software (ANSYS). The system that performs best under investigation can additionally be printed using additive manufacturing. Findings The results show that the customized design of AFOs meets the patient’s requirements and could also be an alternative solution to the existing AFO design. The biomechanical consequences and mechanical properties of additive manufactured AFOs have been comparable to historically synthetic AFOs. While developing the novel AFO designs, the use of 3D printing has many benefits, including stiffness and weight optimization, to improve biomechanical function and comfort. To defeat the issues of foot drop patients, a customized AFO is used to improve the human gait cycle with new material and having better mechanical properties. Originality/value This research work focuses on the biomechanical impacts and mechanical properties of customized 3D-printed AFOs and compares them to traditionally made AFOs. Customized AFO design using 3D printing has numerous potential advantages, including new material with lightweight advancement, to improve biomechanical function and comfort. Normally, new applications mean an incremental collection of learning approximately the behavior of such gadgets and blending the new design, composite speculation and delivered substance production. The test results aim to overcome the new AFO structure issues and display the limited components and stress examination. The outcome of the research is the improved gait cycle of foot drop patients.


2013 ◽  
Vol 37 (5) ◽  
pp. 411-414 ◽  
Author(s):  
Mokhtar Arazpour ◽  
Ahmad Chitsazan ◽  
Monireh Ahmadi Bani ◽  
Gholamreza Rouhi ◽  
Farhad Tabatabai Ghomshe ◽  
...  

Background: The aim of this case study was to identify the effect of a powered stance control knee ankle foot orthosis on the kinematics and temporospatial parameters of walking by a person with poliomyelitis when compared to a knee ankle foot orthosis. Case description and methods: A knee ankle foot orthosis was initially manufactured by incorporating drop lock knee joints and custom molded ankle foot orthoses and fitted to a person with poliomyelitis. The orthosis was then adapted by adding electrically activated powered knee joints to provide knee extension torque during stance and also flexion torque in swing phase. Lower limb kinematic and kinetic data plus data for temporospatial parameters were acquired from three test walks using each orthosis. Findings and outcomes: Walking speed, step length, and vertical and horizontal displacement of the pelvis decreased when walking with the powered stance control knee ankle foot orthosis compared to the knee ankle foot orthosis. When using the powered stance control knee ankle foot orthosis, the knee flexion achieved during swing and also the overall pattern of walking more closely matched that of normal human walking. The reduced walking speed may have caused the smaller compensatory motions detected when the powered stance control knee ankle foot orthosis was used. Conclusion: The new powered SCKAFO facilitated controlled knee flexion and extension during ambulation for a volunteer poliomyelitis person. Clinical relevance The powered stance control knee ankle foot orthosis has the potential to improve knee joint kinematics in persons with poliomyelitis when ambulating.


Stroke ◽  
2013 ◽  
Vol 44 (6) ◽  
pp. 1660-1669 ◽  
Author(s):  
Patricia M. Kluding ◽  
Kari Dunning ◽  
Michael W. O’Dell ◽  
Samuel S. Wu ◽  
Jivan Ginosian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document