Reservoir Engineering Aspect of Well Construction for Cost Effective Field Development: Advances in Drainage Point Selection

Author(s):  
Bengsoon Chuah ◽  
Sumit Soni ◽  
Shlok Jalan ◽  
Hooman Kartooti ◽  
Tg. M. Fauzi B. Tg. A. Hamid ◽  
...  
Author(s):  
Kristin Falk ◽  
Rune Killie ◽  
Svein Ha˚heim ◽  
Per Damsleth

Subsea production of oil and gas involves structures on the seabed such as manifolds and X-mas trees that require thermal insulation of piping and valves to avoid gas hydrate formation. The insulation is expensive and time consuming to apply yet may still leave areas with inadequate protection. These “cold spots” accelerate the cooling during a production shutdown. A Heat-Bank concept is developed as an alternative to conventional insulation. The entire subsea structure is covered with an insulated shell. During shutdowns the heated fluid inside the cover keeps the production equipment warm over a prolonged period before hydrates start to form. Computational Fluid Dynamics (CFD) simulations are used to quantify the heat loss effects of natural convection and leakage through openings in the cover. The CFD analyses demonstrate the relative performance of the concept compared to the traditional method of insulating individual piping components. Application of the Heat-Bank concept opens new possibilities for environmentally friendly and cost-effective field development, especially for deep water.


2020 ◽  
pp. 57-60
Author(s):  
K.I. Mustafaev ◽  
◽  
◽  

The production of residual oil reserves in the fields being in a long-term exploitation is of current interest. The extraction of residual oil in such fields was cost-effective and simple technological process and is always hot topic for researchers. Oil wells become flooded in the course of time. The appearance of water shows in production wells in the field development and operation is basically negative occurrence and requires severe control. Namely for this reason, the studies were oriented, foremost, to the prevention of water shows in production well and the elimination of its complications as well. The paper discusses the ways of reflux efficiency increase during long-term exploitation and at the final stages of development to prevent the irrigation and water use in production wells.


2021 ◽  
Author(s):  
Oleksandr Doroshenko ◽  
Miljenko Cimic ◽  
Nicholas Singh ◽  
Yevhen Machuzhak

Abstract A fully integrated production model (IPM) has been implemented in the Sakhalin field to optimize hydrocarbons production and carried out effective field development. To achieve our goal in optimizing production, a strategy has been accurately executed to align the surface facilities upgrade with the production forecast. The main challenges to achieving the goal, that we have faced were:All facilities were designed for early production stage in late 1980's, and as the asset outdated the pipeline sizes, routing and compression strategies needs review.Detecting, predicting and reducing liquid loading is required so that the operator can proactively control the hydrocarbon production process.No integrated asset model exists to date. The most significant engineering tasks were solved by creating models of reservoirs, wells and surface network facility, and after history matching and connecting all the elements of the model into a single environment, it has been used for the different production forecast scenarios, taking into account the impact of infrastructure bottlenecks on production of each well. This paper describes in detail methodology applied to calculate optimal well control, wellhead pressure, pressure at the inlet of the booster compressor, as well as for improving surface flowlines capacity. Using the model, we determined the compressor capacity required for the next more than ten years and assessed the impact of pipeline upgrades on oil gas and condensate production. Using optimization algorithms, a realistic scenario was set and used as a basis for maximizing hydrocarbon production. Integrated production model (IPM) and production optimization provided to us several development scenarios to achieve target production at the lowest cost by eliminating infrastructure constraints.


2021 ◽  
Author(s):  
Kumar Nathan ◽  
M Arif Iskandar Ghazali ◽  
M Zahin Abdul Razak ◽  
Ismanto Marsidi ◽  
Jamari M Shah

Abstract Abandonment is considered to be the last stage in the oil gas field cycle. Oil and gas industries around the world are bounded by the necessity of creating an abandonment program which is technically sound, complied to the stringent HSE requirement and to be cost-effective. Abandonment strategies were always planned as early as during the field development plan. When there are no remaining opportunities left or no commercially viable hydrocarbon is present, the field need to be abandoned to save operating and maintenance cost. The cost associated on abandonment can often be paid to the host government periodically and can be cost recoverable once the field is ready to be abandoned. In Malaysia, some of the oil producing fields are now in the late life of production thus abandonment strategies are being studied comprehensively. The interest of this paper is to share the case study of one of a field that is in its late life of production and has wells and facilities that planned to be abandon soon. The abandonment in this field is challenging because it involves two countries, as this field is in the hydrocarbon structure that straddling two countries. Series of techno-commercial discussion were held between operators of these two countries to gain an integrated understanding of the opportunity, defining a successful outcome of the opportunity and creating an aligned plan to achieve successful abandonment campaign. Thus, this paper will discuss on technical aspects of creating a caprock model, the execution strategies of abandoning the wells and facilities and economic analysis to study whether a joint campaign between the operators from two countries yields significantly lower costs or otherwise.


2021 ◽  
Author(s):  
Abdelhak Ladmia ◽  
Dr. Younes bin Darak Al Blooshi ◽  
Abdullah Alobedli ◽  
Dragoljub Zivanov ◽  
Myrat Kuliyev ◽  
...  

Abstract The expected profiles of the water produced from the mature ADNOC fields in the coming years imply an important increase and the OPEX of the produced and injected water will increase considerably. This requires in-situ water separation and reinjection. The objective of in-situ fluid separation is to reduce the cost of handling produced water and to extend the well natural flow performance resulting in increased and accelerated production. The current practice of handling produced water is inexpensive in the short term, but it can affect the operating cost and the recovery in the long term as the expected water cut for the next 10-15 years is forecasted to incease significantly. A new water management tool called downhole separation technology was developed. It separates oil and & gas from associated water inside the wellbore to be reinjected back into the disposal wells. The Downhole Oil Water Separation (DHOWS) Technology is one of the key development strategies that can reduce considerable amounts of produced water, improve hydrocarbon recovery, and minimize field development cost by eliminating surface water treatment and handling costs. The main benefits of DHOWS include acceleration of oil offtake, reduction of production cost, lessening produced water volumes, and improved utilization of surface facilities. In effect, DHOWS technologies require specific design criteria to meet the objectives of the well. Therefore, multi--discipline input data are needed to install an effective DHOWS with a robust design that economically outperforms and boosts oil and/or gas productions. This paper describes the fundamental criteria and workflow for selecting the most suitable DHOWS design for new and sidetracked wells to deliver ADNOC production mandates in a cost-effective manner while meeting completion requirements and adhering to reservoir management guidelines.


Sign in / Sign up

Export Citation Format

Share Document