An Innovative Approach to Integrated Fluid Typing in Depleted Reservoirs

2021 ◽  
Author(s):  
Asari Ramli ◽  
Ayham Ashqar ◽  
M. Azan Karim

Abstract The economic value of completing a reservoir is strongly influenced by the fluid type. Wells drilled in developed brown field penetrate reservoirs with significant pressure loss due to offset production. A major challenge in evaluating mature reservoirs is the uncertainty introduced by pore fluids with unknown or varying petrophysical properties, such as change hydrocarbon gravity, diminishing pore pressures, and low to absent gas level indication. These are prone to error and uncertainty. Accurate understanding of reservoir fluid properties is therefore a key requirement for successful reservoir management. This manuscript illustrates a successful integrated workflow to ascertain. An integration between LWD triple combo data, near/far neutron, mud logs, pressure measurement, and production history of neighbouring wells, are critical to confirm fluid type within the drilled reservoirs. Cross plots, ratios and confidence analysis are required to ascertain the confidence level. Acquired data was ranked according to uncertainty associated with the acquisition technique, rate of penetration, lag time, mud type, and pre-test drawdown. Mobility was used as an indicator of fluid type or phase change in absence of any major rock type changes. Gas data were verified for any mud contamination and analysed using ratios to verify Hydrocarbon wetness. Data was ranked based on confidence factor determined through data precision and reservoir propertied. We also highlight the uncertainty in measurements. The fluid typing workflow used successfully identified the correct fluid typing, and reduced the reliance on single conventional method, or the need to run pre-test measurements. Data in intervals dominated with residual oil saturation showed misleading fluid type, same applies in high permeability sand, corrected gas data analysis gave a good indication of fluid type and mapped the change in fluid phase when combined with log data, while near/ far neutron aided to correlate the different sands, however due to its relationship with porosity, there is no one correlation could be derived. This paper illustrates that standard petrophysical techniques, such as analysis of density and neutron porosity logs, near/far neutrons, pretest can give misleading results if used in solo without consideration to the uncertainty associated with the measurement. The integration of fundamentally different data has resulted in identifying the fluid typing and its distribution in the reservoir and without integrating other measurements. A fluid typing systematic was developed to ensure the best and cost-effective model to assure the correct fluid type is identified. In this paper, a methodology is proposed which uses the geodesic transform, and integrate various source fundamentally different data, which is routinely acquired, then develop a systematic reasoning of confidence on data precision and accuracy. The system followed ensured the correct mapping of fluid typing in various reservoirs with different petrophysical properties. It is the first time such workflow is followed, and an integrated approach is consistently used in different sandstone reservoirs.

Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. D13-D30 ◽  
Author(s):  
Edwin Ortega ◽  
Mathilde Luycx ◽  
Carlos Torres-Verdín ◽  
William E. Preeg

Recent advances in logging-while-drilling sigma measurements include three-detector thermal-neutron and gamma-ray decay measurements with different radial sensitivities to assess the presence of invasion. We have developed an inversion-based work flow for the joint interpretation of multidetector neutron, density, and sigma logs to reduce invasion, shoulder-bed, and well-deviation effects in the estimation of porosity, water saturation, and hydrocarbon type, whenever the invasion is shallow. The procedure begins with a correction for matrix and fluid effects on neutron and density-porosity logs to estimate porosity. Multidetector time decays are then used to assess the radial length of the invasion and estimate the virgin-zone sigma while simultaneously reducing shoulder-bed and well-deviation effects. Density and neutron porosity logs are corrected for invasion and shoulder-bed effects using two-detector density and neutron measurements with the output from the time-decay (sigma) inversion. The final step invokes a nuclear solver in which corrected sigma, inverse of migration length, and density in the virgin zone are used to estimate water saturation and fluid type. The fluid type is assessed with a flash calculation and Schlumberger’s Nuclear Parameter calculation code to account for the nuclear properties of different types of hydrocarbon and water as a function of pressure, temperature, and salinity. Results indicate that accounting for invasion effects is necessary when using density and neutron logs for petrophysical interpretation beyond the calculation of total porosity. Synthetic and field examples indicate that the mitigation of invasion effects becomes important in the case of salty mud filtrate invading gas-bearing formations. The advantage of the developed inversion-based interpretation method is its ability to estimate layer-by-layer petrophysical, compositional, and fluid properties that honor multiple nuclear measurements, their tool physics, and their associated borehole geometrical and environmental effects.


Author(s):  
Muhammad Danish Siddiqui ◽  
Arjumand Z Zaidi

<span>Seaweed is a marine plant or algae which has economic value in many parts of the world. The purpose of <span>this study is to evaluate different satellite sensors such as high-resolution WorldView-2 (WV2) satellite <span>data and Landsat 8 30-meter resolution satellite data for mapping seaweed resources along the coastal<br /><span>waters of Karachi. The continuous monitoring and mapping of this precious marine plant and their <span>breeding sites may not be very efficient and cost effective using traditional survey techniques. Remote <span>Sensing (RS) and Geographical Information System (GIS) can provide economical and more efficient <span>solutions for mapping and monitoring coastal resources quantitatively as well as qualitatively at both <span>temporal and spatial scales. Normalized Difference Vegetation Indices (NDVI) along with the image <span>enhancement techniques were used to delineate seaweed patches in the study area. The coverage area of <span>seaweed estimated with WV-2 and Landsat 8 are presented as GIS maps. A more precise area estimation <span>wasachieved with WV-2 data that shows 15.5Ha (0.155 Km<span>2<span>)of seaweed cover along Karachi coast that is <span>more representative of the field observed data. A much larger area wasestimated with Landsat 8 image <span>(71.28Ha or 0.7128 Km<span>2<span>) that was mainly due to the mixing of seaweed pixels with water pixels. The <span>WV-2 data, due to its better spatial resolution than Landsat 8, have proven to be more useful than Landsat<br /><span>8 in mapping seaweed patches</span></span></span></span></span></span></span></span></span></span></span></span></span></span><br /><br class="Apple-interchange-newline" /></span></span></span></span></span>


2010 ◽  
Vol 28 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Laura Louie ◽  
Nopporn Pathanapornpandh ◽  
Unchalee Pultajuk ◽  
Robert Kaplan ◽  
Ian Hodgson ◽  
...  

Acupuncture in combination with antiretroviral therapies is a potentially useful treatment for HIV-related symptom relief in resource-poor settings. Traditional Chinese medicine has a long history of being used to enhance immune function. In the setting of HIV, Chinese traditional medicine allows for symptom treatment without adding extra medications to a complex drug regime. This paper provides details of a project at Mae On Hospital in rural northern Thailand where allopathic/conventional treatments are used in tandem with acupuncture. A preliminary evaluation of the project suggests that an integrated approach to symptom relief is viewed positively by respondents receiving acupuncture, though further studies are required to confirm the association between acupuncture and symptom relief. The project also demonstrates the feasibility of developing a cost-effective acupuncture programme using local healthcare staff.


2005 ◽  
Vol 3 (2) ◽  
pp. 199-205 ◽  
Author(s):  
Luiz Claudio Di Stasi

An integrated and interdisciplinary research programme with native medicinal plants from tropical forests has been performed in order to obtain new forest products for sustainable use in regional markets vis-à-vis ecosystem conservation. For the success of this programme ethnopharmacological studies are very important with respect to (i) identification of useful plants including medicinal and aromatic species; (ii) recuperation and preservation of traditional knowledge about native plants; and (iii) identification of potential plants with economic value. The plants are selected with a view to evaluate efficacy and safety (pharmacological and toxicological studies), and phytochemical profile and quality control (phytochemical and chromatographic characterization). These studies are very important to add value to plant products and also to mitigate unscrupulous exploitation of medicinal plants by local communities, since multiple use of plants represents an excellent strategy for sustaining the tropical ecosystem through ex situ and in situ conservation. Thus, conservation of tropical resources is possible in conjunction with improvements in the quality of life of the traditional communities and production of new products with therapeutic, cosmetic and ‘cosmeceutic’ value.


Author(s):  
Amir Hossein Mirzabe ◽  
◽  
Gholam Reza Chegini ◽  

Sunflower seeds and oil in food and agricultural processing are of great importance. Dried sunflower petals are the most important parts of the sunflower plant that have economic value. Thin-layer drying experiments were performed in a laboratory scale hot-air dryer. The results indicated that with increasing drying temperature and air velocity, time of drying reduces and in most cases, the logarithmic model had the best performance for modeling the drying kinetics. The calculated values of the effective moisture diffusivity varied from 3.16627 ×10-13 to 1.32860 ×10-12 m2 s-1 and the values of the activation energy for air velocities of 0.4 and 0.8 m s-1 were equal to 51.21 and 42.3 kJ mol-1, respectively. Also, to verify whether the production and sale of sunflower petals can be cost effective, economic analysis was done. This analysis showed that drying of sunflower petals is profitable process and the generated revenue can even surpass the revenue from the sale of sunflower seeds.


1990 ◽  
Vol 6 (1) ◽  
pp. 25-44 ◽  
Author(s):  
Deborah A. Finkelstein ◽  
Susan Frissell

Surfaces ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 485-496 ◽  
Author(s):  
Wilson Handoko ◽  
Farshid Pahlevani ◽  
Yin Yao ◽  
Karen Privat ◽  
Veena Sahajwalla

Corrosion resistance of steel has attracted substantial interest for manufacturing applications to reduce costs corresponding to part failures, unexpected maintenance, and shortening lifespan. Meanwhile, millions of tonnes of slag, non-recyclable glass, and automotive shredder residue (ASR) are discarded into landfills every year, polluting the environment. Combining these two major issues, we delivered an alternative solution to enhance corrosion resistance of high-C steel. In this research, utilisation of these wastes (which were chemically bonded into steel substrate) as sources for production of multi-hybrid layering—including the multi-phase ceramic layer, the carbide layer, and the selective diffusion layer—was successfully achieved by single step surface modification technology. High-resolution topographical imaging by SEM and chemical composition analysis in micron-volume by electron probe micro analyser (EPMA) were performed. Nano-characterisation by atomic force microscopy (AFM) using the PeakForce quantitative nanomechanical mapping (PF-QNM) method was conducted to define Young’s modulus value of each phase in detail. Results revealed improvement of corrosion resistance by 39% and a significantly increased hardness of 13.58 GPa. This integrated approach is prominent for economic and environmental sustainability, consolidating industry demands for more profits, producing durable, steel components in a cost effective way to reduce dependency on new resources, and minimising negative impacts to the environment from disposal of wastes to the landfills.


Author(s):  
Linda Landells ◽  
Martyn Burke ◽  
Meindert Boysen

INTRODUCTION:The changing regulatory landscape brings new challenges to Health Technology Assessment (HTA). Marketing authorizations are being granted as the evidence base evolves to facilitate timely patient access to promising health technologies. Consequently, some products come to HTA bodies sooner in their development cycles with less evidence, which ultimately leads to greater uncertainty in decision making. A key challenge for payer and HTA bodies is providing access to promising medicines while the evidence is still emerging, in a financially sustainable way.METHODS:Changes to the Cancer Drugs Fund (CDF) have resulted in a managed access fund for cancer medicines in England. The National Institute for Health and Care Excellence (NICE) can now recommend a treatment for use within the CDF if there is plausible potential to satisfy the criteria for routine use in the National Health Service (NHS) at its current price, but the evidence is not robust enough and associated with significant uncertainty. Further evidence is then generated in clinical trials, through observational data collection, or a combination of the two, while the drug's price reflects the decision uncertainty. At the end of the managed access period, NICE reviews the guidance to determine if the treatment can be recommended for routine commissioning.RESULTS:The first treatment recommended for use within the new CDF was osimertinib for non-small cell lung cancer (1). At the time of NICE appraisal, there was considerable uncertainty in osimertinib's clinical and cost effectiveness because only short-term phase II trial results were available. NICE's independent appraisal committee considered there was plausible potential for osimertinib to be cost effective and identified that an ongoing phase III trial would provide longer-term data addressing the key uncertainties.CONCLUSIONS:An integrated approach between payer and HTA decision-maker has significantly changed how cancer treatments in England are appraised. This collaborative way of working heralds a more sustainable approach to introducing promising cancer treatments.


2002 ◽  
Vol 2 ◽  
pp. 1254-1266
Author(s):  
Ekko van Ierland ◽  
Corjan Brink ◽  
Leen Hordijk ◽  
Carolien Kroeze

Environmental economics deals with the optimal allocation of production factors and correcting market failure in protecting the environment. Market failure occurs because of externalities, common property resources, and public goods. Environmental policy instruments include direct regulation, taxes/subsidies, tradable permits, deposit systems, voluntary agreements, and persuasion.Environmental policies usually focus on one pollutant or environmental issue but may have substantial impacts on other emissions and environmental problems. Neglecting these impacts will result in suboptimal policies. We present an integrated optimisation model for determining cost-effective strategies to simultaneously reduce emissions of several pollutants from several sources, allowing for interrelations between sources and abatement options. Our integrated approach in regard to acidifying compounds and greenhouse gases will be able to provide cost-effective policy options that will result in lower overall abatement costs.This paper shows that efficient emission reduction can be calculated, but we argue that, for transboundary air pollution and climate change, it is difficult to implement the socially optimal solution because strong incentives exist for “free-riding”. In order to implement efficient policies, international environmental agree-ments like the Gothenburg or the Kyoto Protocol are necessary to establish stable coalitions. The stability of these agreements depends on the distribution of costs and benefits over countries and on the redistribution of the gains of cooperation.


Sign in / Sign up

Export Citation Format

Share Document