CoalBed Methane Pad Wells Completion and Artificial Lift Optimizations: Case Study From Australia Surat Basin DS Gas Field

2021 ◽  
Author(s):  
Li Ming ◽  
Xia Zhaohui ◽  
Liu Lingli ◽  
Cui Zehong ◽  
Duan LiJiang ◽  
...  

Abstract The Coalbed Methane in Australia Surat Basin is main gas source for LNG project in east coast of Australia[1]. Traditionally, Coalbed Methane are drilled by vertical wells. But there are big intensively farmed land coverage in the Surat Basin, the multiple wells on single, larger pad from the surface, the bores slant away at around 70 degrees to intersect multiple, thin coal seams are applied to avoid the extra "footprint" and decrease the environment affect. Many pad wells production failure because of poor interburden isolation. Excessive solids production in pad wells resulted in new failures of holes in tubing due to accelerated erosion, which bring big challenges for the Coalbed methane production in deviated pad wells. The gas production in pad wells are analysised and the new pad wells optimization are proposed. First, the complete wire log (at least include GR and density log curves) need to acquire for correct thin coal seams correlation and locate the interburden sandstone position for future good sandstone isolation. Second the customized completion strategy and placement (swell packer) are applied in the pad wells and specialized tubing with enhanced erosion resistance to extend the run life. Thirdly ESP pumps and optimized tubing are installed in new deviated wells for good gas production. After the pad wells were put into production, the gas production was kept well for long time without pump problems. Swell able packer completion significantly eliminates sand problem by isolating in excess of or close to 80% of interburden sand. The above well completion and artificial lift optimization methods bring good production performance for the new pad wells and contribute much production for the producing gas field. The swellable packer completion also can be used in vertical wells and will be standard well completion methods for future gas development wells.

2021 ◽  
Vol 7 (5) ◽  
pp. 4608-4620
Author(s):  
Jia Liu ◽  
Yinghong Liu ◽  
Ruyong Feng ◽  
Na Li

Objectives: In order to deeply analyze the feasibility of reducing pressure and increasing production of coalbed methane wells in nano-porous coal seams and clarify the principle of well selection. Methods: The sensitivity of bottom hole flowing pressure to coalbed methane production is analyzed by establishing productivity equation in stable production period of coalbed methane wells. Combined with the numerical simulation method, the drainage and production effect of L-1 well in the Block A is simulated after reducing the flowing pressure at the bottom of the well. Results: The results show that for CBM wells that have been put into production, the effect of increasing the production can be achieved by reducing the bottom hole flowing pressure, and when the bottom hole flowing pressure is large, reducing the bottom hole flowing pressure can obtain a larger increase in gas production. The cumulative gas production of Well L-1 can be increased by 110x104m3 compared with the previous measures, and the increase rate can reach 85%. Conclusion: Combining with the pressure-reducing and increasing production wells in the Block A, the applicable conditions for pressure-dropping and increasing production to increase the production of CBM wells are proposed, that is, continuous and stable drainage and production, and there is a certain height of liquid column between the moving liquid level and the coal roof before operation.


2013 ◽  
Author(s):  
Anselmo Gil Chacon ◽  
Manuel Monroy Barrios ◽  
Dayana Beatriz Sarmiento Varela ◽  
Alfonso Buitrago ◽  
Lazaro Luna

SPE Journal ◽  
2018 ◽  
Vol 24 (02) ◽  
pp. 681-697 ◽  
Author(s):  
Zheng Sun ◽  
Juntai Shi ◽  
Keliu Wu ◽  
Tao Zhang ◽  
Dong Feng ◽  
...  

Summary Low-permeability coalbed-methane (CBM) reservoirs possess unique pressure-propagation behavior, which can be classified further as the expansion characteristics of the drainage area and the desorption area [i.e., a formation in which the pressure is lower than the initial formation pressure and critical-desorption pressure (CDP), respectively]. Inevitably, several fluid-flow mechanisms will coexist in realistic coal seams at a certain production time, which is closely related to dynamic pressure and saturation distribution. To the best of our knowledge, a production-prediction model for CBM wells considering pressure-propagation behavior is still lacking. The objective of this work is to perform extensive investigations into the effect of pressure-propagation behavior on the gas-production performance of CBM wells. First, the pressure-squared approach is used to describe the pressure profile in the desorption area, which has been clarified as an effective-approximation method. Also, the pressure/saturation relationship that was developed in our previous research is used; therefore, saturation distribution can be obtained. Second, an efficient iteration algorithm is established to predict gas-production performance by combining a new gas-phase-productivity equation and a material-balance equation. Finally, using the proposed prediction model, we shed light on the optimization method for production strategy regarding the entire production life of CBM wells. Results show that the decrease rate of bottomhole pressure (BHP) should be slow at the water single-phase-flow stage, fast at the early gas/water two-phase-flow stage, and slow at the late gas/water two-phase-flow stage, which is referred to as the slow/fast/slow (SFS) control method. Remarkably, in the SFS control method, the decrease rate of the BHP at each period can be quantified on the basis of the proposed prediction model. To examine the applicability of the proposed SFS method, it is applied to an actual CBM well in Hancheng Field, China, and it enhances the cumulative gas production by a factor of approximately 1.65.


2018 ◽  
Vol 45 (2) ◽  
pp. 312-320 ◽  
Author(s):  
Zhaobiao YANG ◽  
Zhengguang ZHANG ◽  
Yong QIN ◽  
Congcong WU ◽  
Tongsheng YI ◽  
...  

2013 ◽  
Vol 295-298 ◽  
pp. 3171-3174
Author(s):  
Gang Yang ◽  
Zhi Ming Wang ◽  
Ru Jie Peng ◽  
Tian Chen ◽  
Zhong Xin Ren

Aim at the diversity of coalbed methane well completion methods, grey system is used to select completion method. Firstly, implement production prediction and economic evaluation. Then evaluate five indexes: cumulative gas production, net present value, dynamic payback period, internal rate of return and risk factor. The most appropriate completion method can be got. When apply this evaluation method to Sihe mining of Qinshui basin, results show that pinnate horizontal well is the most suitable completion method, followed by fractured vertical well.


Author(s):  
Chen Hao ◽  
Qin Yong ◽  
Zhou Shangwen ◽  
Wang Hongyan ◽  
Chen Zhenhong ◽  
...  

Coalbed Methane(CBM) production enhancement for single wells is a big problem to CBM industrialization. Low production is due to insufficient gas generation by thermogenic. Luckily, Biogenic gas was found in many areas and its supply is assumed to improve coalbed methane production. Therefore, microbial simulation experiment will demonstrate the effectiveness of the assumption. From microbial simulation experiment on different coal ranks, it is found that microbes can use coals to produce biogas under laboratory conditions. With different temperatures for different experiments, it turns out that the gas production at 35 ℃ is greater than that at 15℃,indicating that 35℃ is more suitable for microbes to produce gas. According to quantitative experiments, adding exogenous nutrients or exogenous bacteria can improve CBM production. Moreover, the production enhancement ratio can reach up to 115% under the condition of adding exogenous bacterial species, while the ratio for adding nutrients can be up to 144%.


2005 ◽  
Vol 127 (3) ◽  
pp. 248-256 ◽  
Author(s):  
Hossein Jahediesfanjani ◽  
Faruk Civan

Coalbed methane (CBM) reservoirs are characterized as naturally fractured, dual porosity, low permeability, and water saturated gas reservoirs. Initially, the gas, water, and coal are at thermodynamic equilibrium under prevailing reservoir conditions. Dewatering is essential to promote gas production. This can be accomplished by suitable completion and stimulation techniques. This paper investigates the efficiency and performance of the openhole cavity, hydraulic fractures, frack and packs, and horizontal wells as potential completion methods which may reduce formation damage and increase the productivity in coalbed methane reservoirs. Considering the dual porosity nature of CBM reservoirs, numerical simulations have been carried out to determine the formation damage tolerance of each completion and stimulation approach. A new comparison parameter, named as the normalized productivity index Jnp(t) is defined as the ratio of the productivity index of a stimulated well to that of a nondamaged vertical well as a function of time. Typical scenarios have been considered to evaluate the CBM properties, including reservoir heterogeneity, anisotropy, and formation damage, for their effects on Jnp(t) over the production time. The results for each stimulation technique show that the value of Jnp(t) declines over the time of production with a rate which depends upon the applied technique and the prevailing reservoir conditions. The results also show that horizontal wells have the best performance if drilled orthogonal to the butt cleats. Long horizontal fractures improve reservoir productivity more than short vertical ones. Open-hole cavity completions outperform vertical fractures if the fracture conductivity is reduced by any damage process. When vertical permeability is much lower than horizontal permeability, production of vertical wells will improve while productivity of horizontal wells will decrease. Finally, pressure distribution of the reservoir under each scenario is strongly dependent upon the reservoir characteristics, including the hydraulic diffusivity of methane, and the porosity and permeability distributions in the reservoir.


2020 ◽  
Vol 10 (8) ◽  
pp. 3557-3568
Author(s):  
Md. Shaheen Shah ◽  
Md Hafijur Rahaman Khan ◽  
Ananna Rahman ◽  
Stephen Butt

Abstract The overall performance of gas reservoirs and the optimization of production, as well as its sensitivity analysis, are affected by several factors such as reservoir pressure, well configuration and surface facilities. The Habiganj well no. 06 (HBJ-06) is one of the significant gas-producing vertical wells of the Habiganj gas field, currently producing 14.963 MMscfd of natural gas from the upper gas sand. The widely used Nodal analysis is an optimization technique to improve the performance and was applied for the HBJ-06 to increase its production rate by optimizing manners. By this analysis, each component starting from the reservoir to the outlet pressure of the separator was identified as a resistance in the system by evaluating their inflow performance relationship and vertical lift performance. The F.A.S.T. VirtuWell™ software package was used to perform this analysis, where the declinations of wellhead pressures were suggested as 1300, 1200, 1100 and 1000 psi(a) without any modification of the tubing diameter and skin factor. Hence, the respective optimized rates of the daily gas production were increased to 38.481, 40.993, 43.153 and 46.016 MMscfd. At the same time, the optimized condensate gas ratio was calculated as 0.07, 0.06, 0.06 and 0.05, associated with the optimized condensate water ratio of 0.11, 0.10, 0.09 and 0.08, respectively.


Sign in / Sign up

Export Citation Format

Share Document