scholarly journals Production of Tomato Fruits with High Brix in Nutrient Solution Cultivation System with Granular Rockwool. (Part 1). Measurement and Analysis of Physiological Information of Tomato Plants under Water Stress.

1998 ◽  
Vol 10 (2) ◽  
pp. 113-118 ◽  
Author(s):  
Hiroshige NISHINA ◽  
Takashi YOSHIDA ◽  
Kouji NAGATOMO ◽  
Masanao MIYOSHI ◽  
Yasushi HASHIMOTO
HortScience ◽  
2008 ◽  
Vol 43 (7) ◽  
pp. 2048-2051 ◽  
Author(s):  
Sofia Caretto ◽  
Angelo Parente ◽  
Francesco Serio ◽  
Pietro Santamaria

This research was conducted to determine the effect of potassium (K) and cultivar on important quality traits of tomato (Solanum lycopersicum L.), including reducing sugar, titratable acidity, and vitamin E content. Tomato plants were grown in a soilless system. Three K levels (low, middle, and high equal to 150, 300, and 450 mg·L−1 in the nutrient solution, respectively) and three cultivars (SVR, Kabiria, and Esperanza) were compared. Among cultivars, Kabiria, which is characterized by smaller fruits, showed 23% higher total soluble solids (TSS) than the average of the other cultivars. ‘Kabiria’ also showed a total tocopherol (vitamin E) content (18.5 mg·kg−1), markedly higher than SVR and Esperanza cultivars (12.2 and 10.3 mg·kg−1, respectively). Increased K levels in the nutrient solution resulted in increased contents of TSS, reducing sugar contents and titratable acidity in tomato fruits. Also, the vitamin E content of tomato fruits was significantly affected by differing K concentrations in the nutrient solution.


HortScience ◽  
2017 ◽  
Vol 52 (9) ◽  
pp. 1195-1200 ◽  
Author(s):  
Tatiana Pagan Loeiro da Cunha-Chiamolera ◽  
Miguel Urrestarazu ◽  
Arthur Bernardes Cecílio Filho ◽  
Isidro Morales

An intercrop is studied here as a new way of farming in soilless systems within a protected environment. To estimate the efficiency of intercropping in this cultivation system, an experiment was conducted to evaluate the effect of the electrical conductivity (EC) of the nutrient solution (2.0, 2.5, and 3.0 dS·m−1) on lettuce and tomato plants and on the agronomic and economic feasibility of the intercrop compared with monoculture. The results indicated that a moderate increase in EC from 2.0 to 3.0 dS·m−1 did not exert any important effect on tomato plant production or quality but did cause a decrease in lettuce yield in both the first and second crops. Intercropping was only feasible for lettuce when the tomato and lettuce plants were transplanted on the same day. The highest tomato (G class) and lettuce yields were achieved at an EC of 2.5 dS·m−1; this condition resulted in the highest intercrop profitability (0.53 €·m−2 more) when compared with tomato monoculture.


2022 ◽  
Vol 12 ◽  
Author(s):  
Maria Cristina Della Lucia ◽  
Ali Baghdadi ◽  
Francesca Mangione ◽  
Matteo Borella ◽  
Walter Zegada-Lizarazu ◽  
...  

This work aimed to study the effects in tomato (Solanum lycopersicum L.) of foliar applications of a novel calcium-based biostimulant (SOB01) using an omics approach involving transcriptomics and physiological profiling. A calcium-chloride fertilizer (SOB02) was used as a product reference standard. Plants were grown under well-watered (WW) and water stress (WS) conditions in a growth chamber. We firstly compared the transcriptome profile of treated and untreated tomato plants using the software RStudio. Totally, 968 and 1,657 differentially expressed genes (DEGs) (adj-p-value < 0.1 and |log2(fold change)| ≥ 1) were identified after SOB01 and SOB02 leaf treatments, respectively. Expression patterns of 9 DEGs involved in nutrient metabolism and osmotic stress tolerance were validated by real-time quantitative reverse transcription PCR (RT-qPCR) analysis. Principal component analysis (PCA) on RT-qPCR results highlighted that the gene expression profiles after SOB01 treatment in different water regimes were clustering together, suggesting that the expression pattern of the analyzed genes in well water and water stress plants was similar in the presence of SOB01 treatment. Physiological analyses demonstrated that the biostimulant application increased the photosynthetic rate and the chlorophyll content under water deficiency compared to the standard fertilizer and led to a higher yield in terms of fruit dry matter and a reduction in the number of cracked fruits. In conclusion, transcriptome and physiological profiling provided comprehensive information on the biostimulant effects highlighting that SOB01 applications improved the ability of the tomato plants to mitigate the negative effects of water stress.


2003 ◽  
Vol 72 (2) ◽  
pp. 148-155 ◽  
Author(s):  
Yuka Nakano ◽  
Akimasa Nakano ◽  
Shin-ichi Watanabe ◽  
Kunio Okano ◽  
Jiro Tatsumi

Sign in / Sign up

Export Citation Format

Share Document