scholarly journals Benthic polychaetes collected in the III Expedición “Admiral Padilla” Austral Summer 2016-2017, to the north of the Antarctic Peninsula

2021 ◽  
Vol 50 (SuplEsp) ◽  
pp. 221-226
Author(s):  
Catalina Arteaga ◽  
Maryela Bolaño

Polychaeta represents the most diverse class in the phylum Annelida, mainly composed by marine organisms, with some terrestrial and freshwater representatives. The present work records the information of the benthic polychaetes, which were collected in four stations in the northern sector of the Antarctic Peninsula, in the III Expedición “Admiral Padilla” verano austral 2016-2017, including taxonomy, relative abundance and frequency of occurrence by family. A total of 326 individuals were quantified, distributed in 12 families: Apistobranchidae, Capitellidae, Cirratulidae, Dorvilleidae, Maldanidae, Nereididae, Orbiniidae, Paraonidae, Serpulidae, Sigalionidae, Spionidae and Syllidae, and the suborder Terebelliformia. Cirratulidae, and Paraonidae were predominant in terms of abundance and frequency. A previous taxonomic analysis has shown morphological variability in the families Cirratulidae, Dorvilleidae, Maldanidae, Paraonidae and Syllidae, and the suborder Terebelliformia. The samples were processed, and deposited at the Marine Natural History Museum of Colombia (MHNMC) – Makuriwa from the Marine and Coastal Research Institute “José Benito Vives de Andréis - Invemar.

Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 217
Author(s):  
Jiangping Zhu ◽  
Aihong Xie ◽  
Xiang Qin ◽  
Yetang Wang ◽  
Bing Xu ◽  
...  

The European Center for Medium-Range Weather Forecasts (ECMWF) released its latest reanalysis dataset named ERA5 in 2017. To assess the performance of ERA5 in Antarctica, we compare the near-surface temperature data from ERA5 and ERA-Interim with the measured data from 41 weather stations. ERA5 has a strong linear relationship with monthly observations, and the statistical significant correlation coefficients (p < 0.05) are higher than 0.95 at all stations selected. The performance of ERA5 shows regional differences, and the correlations are high in West Antarctica and low in East Antarctica. Compared with ERA5, ERA-Interim has a slightly higher linear relationship with observations in the Antarctic Peninsula. ERA5 agrees well with the temperature observations in austral spring, with significant correlation coefficients higher than 0.90 and bias lower than 0.70 °C. The temperature trend from ERA5 is consistent with that from observations, in which a cooling trend dominates East Antarctica and West Antarctica, while a warming trend exists in the Antarctic Peninsula except during austral summer. Generally, ERA5 can effectively represent the temperature changes in Antarctica and its three subregions. Although ERA5 has bias, ERA5 can play an important role as a powerful tool to explore the climate change in Antarctica with sparse in situ observations.


1998 ◽  
Vol 27 ◽  
pp. 571-575 ◽  
Author(s):  
J. C. King ◽  
S. A. Harangozo

Temperature records from slations on the west roast of the Antarctic Peninsula show a very high level of interannual variability and, over the last 50 years, larger warming trends than are seen elsewhere in Antarctica. in this paper we investigate the role of atmospheric circulation variability and sea-ice extent variations in driving these changes. Owing to a lack of independent data, the reliability of Antarctic atmospheric analyses produced in the 1950s and 1960s cannot be readily established, but examination of the available data suggests that there has been an increase in the northerly component of the circulation over the Peninsula since the late 1950s. Few observations of sea-ice extent are available prior to 1973, but the limited data available indicate that the ice edge to the west of the Peninsula lay to the north of recently observed extremes during the very cold conditions prevailing in the late 1950s. The ultimate cause of the atmospheric-circulation changes remains to be determined and may lie outside the Antarctic region.


2013 ◽  
Vol 7 (3) ◽  
pp. 797-816 ◽  
Author(s):  
T. O. Holt ◽  
N. F. Glasser ◽  
D. J. Quincey ◽  
M. R. Siegfried

Abstract. George VI Ice Shelf (GVIIS) is located on the Antarctic Peninsula, a region where several ice shelves have undergone rapid breakup in response to atmospheric and oceanic warming. We use a combination of optical (Landsat), radar (ERS 1/2 SAR) and laser altimetry (GLAS) datasets to examine the response of GVIIS to environmental change and to offer an assessment on its future stability. The spatial and structural changes of GVIIS (ca. 1973 to ca. 2010) are mapped and surface velocities are calculated at different time periods (InSAR and optical feature tracking from 1989 to 2009) to document changes in the ice shelf's flow regime. Surface elevation changes are recorded between 2003 and 2008 using repeat track ICESat acquisitions. We note an increase in fracture extent and distribution at the south ice front, ice-shelf acceleration towards both the north and south ice fronts and spatially varied negative surface elevation change throughout, with greater variations observed towards the central and southern regions of the ice shelf. We propose that whilst GVIIS is in no imminent danger of collapse, it is vulnerable to ongoing atmospheric and oceanic warming and is more susceptible to breakup along its southern margin in ice preconditioned for further retreat.


2013 ◽  
Vol 7 (1) ◽  
pp. 373-417 ◽  
Author(s):  
T. O. Holt ◽  
N. F. Glasser ◽  
D. J. Quincey ◽  
M. R. Siegfried

Abstract. George VI Ice Shelf (GVIIS) is located on the Antarctic Peninsula, a region where several ice shelves have undergone rapid breakup in response to atmospheric and oceanic warming. We use a combination of optical (Landsat), radar (ERS 1/2 SAR) and laser altimetry (GLAS) datasets to examine the response of GVIIS to environmental change and to offer an assessment on its future stability. The spatial and structural changes of GVIIS (ca. 1973 to ca. 2010) are mapped and surface velocities are calculated at different time periods (InSAR and optical feature tracking from 1989 to 2009) to document changes in the ice shelf's flow regime. Surface elevation changes are recorded between 2003 and 2008 using repeat track ICESat acquisitions. We note an increase in fracture extent and distribution at the south ice front, ice-shelf acceleration towards both the north and south ice fronts and spatially varied negative surface elevation change throughout, with greater variations observed towards the central and southern regions of the ice shelf. We propose that whilst GVIIS is in no imminent danger of collapse, it is vulnerable to on-going atmospheric and oceanic warming and is more susceptible to breakup along its southern margin in ice preconditioned for further retreat.


Polar Record ◽  
1971 ◽  
Vol 15 (99) ◽  
pp. 887-889 ◽  
Author(s):  
Terence Armstrong

For the last twenty years there has been considerable Soviet interest in the circumnavigation of Antarctica by the Russian naval expedition of 1819–21, led by Captain T. T. Bellingshausen, with Lieut M. P. Lazarev as his second in command, in the sloops Vostok and Mirnyy. It is now reasonably certain that Bellingshausen sighted the Antarctic continent several times, notably on 27 January 1820 (New Style) at a point about lat 69°21′S, long 2°14′W, and was thus the first to see it (Edward Bransfield sighted the north-west coast of the Antarctic Peninsula at about lat 63°50′S, long 60°30′W on 30 January 1820, three days later). Bellingshausen did not claim to have done so however, but his descriptions of what he saw tally very well with what the edge of the continent here is now known to look like. There is one relatively new point. Bellingshausen's first sighting has been moved forward one day, from the 28th to the 27th, because it has been shown that he was keeping ship's time, from mid-day to mid-day, and therefore that what his log called the 28th (his sighting being in the second half of the day) was what the civil calendar would call the 27th (Belov, 1963, p 19–29). All this much is well documented and unlikely to be disputed. The question is, how much importance did he, and his contemporaries, attach to this discovery? And did he realize that he had seen the edge of a continent? Recent Soviet studies have sought to show that he had a very good idea of the importance of what he had seen, and that this idea did get through to his contemporaries. It is here that there is room for argument with the Soviet scholars.


2001 ◽  
Vol 56 (3) ◽  
pp. 308-321 ◽  
Author(s):  
Colm Ó Cofaigh ◽  
Julian A. Dowdeswell ◽  
Carol J. Pudsey

AbstractSediment cores from the continental rise west of the Antarctic Peninsula and the northern Weddell and Scotia Seas were investigated for their ice-rafted debris (IRD) content by lithofacies logging and counting of particles >0.2 cm from core x-radiographs. The objective of the study was to determine if there are iceberg-rafted units similar to the Heinrich layers of the North Atlantic that might record periodic, widespread catastrophic collapse of basins within the Antarctic Ice Sheet during the Quaternary. Cores from the Antarctic Peninsula margin contain prominent IRD-rich units, with maximum IRD concentrations in oxygen isotope stages 1, 5, and 7. However, the greater concentration of IRD in interglacial stages is the result of low sedimentation rates and current winnowing, rather than regional-scale episodes of increased iceberg rafting. This is also supported by markedly lower mass accumulation rates (MAR) during interglacial periods versus glacial periods. Furthermore, thinner IRD layers within isotope stages 2–4 and 6 cannot be correlated between individual cores along the margin. This implies that the ice sheet over the Antarctic Peninsula did not undergo widespread catastrophic collapse along its western margin during the late Quaternary (isotope stages 1–7). Sediment cores from the Weddell and Scotia Seas are characterized by low IRD concentrations throughout, and the IRD signal generally appears to be of limited regional significance with few strong peaks that can be correlated between cores. Tentatively, this argues against pervasive, rapid ice-sheet collapse around the Weddell embayment over the last few glacial cycles.


1996 ◽  
Vol 74 (2) ◽  
pp. 388-393 ◽  
Author(s):  
R. P. Hobson ◽  
A. R. Martin

Groups of the little-known Arnoux's beaked whale, Berardius arnuxii, were observed at narrow cracks or leads in sea ice near the Antarctic peninsula during the austral summer of 1992–1993. The whales were grey, had a slightly asymmetric blowhole and blow, and were heavily scarred in adulthood. At least 30 animals were uniquely identified using their scars. Despite often cramped conditions at the breathing holes, the whales were always calm and nonaggressive, reacting to the circumstances with surfacing and submerging behaviour involving little horizontal movement. Seventy dive durations by 17 identified adults were recorded, with a mode of 35–65 min and a maximum of at least 70 min. Eight periods of respiration varied between 1.2 and 6.8 min, with an average of 9.6 blows/min. These breath-hold characteristics confirm B. arnuxii as one of the most accomplished mammalian divers, capable of swimming up to an estimated 7 km between breathing sites in sea ice. Whales moved to and from the observed lead, apparently able to find other breathing sites in what appeared to be unbroken ice. The species seems well adapted to life in ice-covered waters and may be able to exploit food resources inaccessible to other predators in the region.


2020 ◽  
Vol 17 ◽  
pp. 209-217
Author(s):  
Sergi Gonzalez ◽  
Alfons Callado ◽  
Mauricia Martínez ◽  
Benito Elvira

Abstract. Kilometric-resolution Ensemble Prediction Systems (EPSs) will be the new state-of-the-art forecasting tools for short-range prediction in the following decade. Their value will be even greater in Antarctica due to the increasingly demanding weather forecasts for logistic services. During the 2018–2019 austral summer (1 December–31 March), coinciding with the Southern Hemisphere Special Observation Period of the Year of Polar Prediction (YOPP), the 2.5 km AEMET-γSREPS was operationally integrated over the Antarctic Peninsula. In particular, the Antarctic version of γSREPS comes up with crossing four non-hydrostatic convection-permitting NWP models at 2.5 km with three global NWP driving models as boundary conditions. The γSREPS forecasting system has been validated in comparison with ECMWF EPS. It is concluded that γSREPS has an added value to ECMWF EPS due to both its higher resolution and its multi-boundary conditions and multi-NWP model approach. γSREPS performance has a positive impact on logistic activities at research stations and its design may contribute to polar prediction research.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
W. A. Dickens ◽  
G. Kuhn ◽  
M. J. Leng ◽  
A. G. C. Graham ◽  
J. A. Dowdeswell ◽  
...  

Abstract The Antarctic Peninsula Ice Sheet is currently experiencing sustained and accelerating loss of ice. Determining when these changes were initiated and identifying the main drivers is hampered by the short instrumental record (1992 to present). Here we present a 6,250 year record of glacial discharge based on the oxygen isotope composition of diatoms (δ18Odiatom) from a marine core located at the north-eastern tip of the Antarctic Peninsula. We find that glacial discharge - sourced primarily from ice shelf and iceberg melting along the eastern Antarctic Peninsula – remained largely stable between ~6,250 to 1,620 cal. yr BP, with a slight increase in variability until ~720 cal. yr. BP. An increasing trend in glacial discharge occurs after 550 cal. yr BP (A.D. 1400), reaching levels unprecedented during the past 6,250 years after 244 cal. yr BP (A.D. 1706). A marked acceleration in the rate of glacial discharge is also observed in the early part of twentieth century (after A.D. 1912). Enhanced glacial discharge, particularly after the 1700s is linked to a positive Southern Annular Mode (SAM). We argue that a positive SAM drove stronger westerly winds, atmospheric warming and surface ablation on the eastern Antarctic Peninsula whilst simultaneously entraining more warm water into the Weddell Gyre, potentially increasing melting on the undersides of ice shelves. A possible implication of our data is that ice shelves in this region have been thinning for at least ~300 years, potentially predisposing them to collapse under intensified anthropogenic warming.


2006 ◽  
Vol 18 (2) ◽  
pp. 261-264 ◽  
Author(s):  
Morag A. Hunter ◽  
David J. Cantrill ◽  
Michael J. Flowerdew

Dating Jurassic terrestrial floras in the Antarctic Peninsula has proved problematic and controversial. Here U–Pb series dating on detrital zircons from a conglomerate interbedded with fossil plant material provide a maximal depositional age of 144 ± 3 Ma for a presumed Jurassic flora. This is the first confirmed latest Jurassic-earliest Cretaceous flora from the Latady Basin, and represents some of the youngest sedimentation in this basin. The presence of terrestrial sedimentation at Cantrill Nunataks suggests emergence of the arc closer to the Latady Basin margin in the south compared to Larsen Basin in the north, probably as a result of the failure of the southern Weddell Sea to undergo rifting.


Sign in / Sign up

Export Citation Format

Share Document