0287 Gene set enrichment analysis of bovine respiratory disease complex SNP data in feedlot cattle

2016 ◽  
Vol 94 (suppl_5) ◽  
pp. 136-136
Author(s):  
M. Neupane ◽  
J. F. Taylor ◽  
C. M. Seabury ◽  
J. E. Womack ◽  
H. L. Neibergs
2018 ◽  
Vol 7 (11) ◽  
Author(s):  
Gregory P. Harhay ◽  
Dayna M. Harhay ◽  
James L. Bono ◽  
Timothy P. L. Smith ◽  
Sarah F. Capik ◽  
...  

Pasteurella multocida is an animal-associated Gram-negative member of the Pasteurellaceae family. It is an opportunistic pathogen and is one of the principal bacterial species contributing to bovine respiratory disease complex (BRDC) in feedlot cattle.


2015 ◽  
Vol 93 (4) ◽  
pp. 1841-1849
Author(s):  
J. A. Matera ◽  
B. K. Wilson ◽  
J. A. Hernandez Gifford ◽  
D. L. Step ◽  
C. R. Krehbiel ◽  
...  

Abstract Bovine respiratory disease complex (BRDC) is the leading cause of morbidity and mortality in feedlot cattle. Significant inflammation and lesions are often observed in lungs of infected cattle. During acute inflammatory responses, histones contribute to mortality in rodents and humans and serum proteins can protect against histone-induced cytotoxicity. We hypothesized that cattle experiencing chronic or fatal cases of BRDC have reduced ability to protect against cytotoxic effects of histones. Serum samples were collected from 66 bull calves at the time of normal feedlot processing procedures. Animals were retrospectively assigned to groups consisting of calves never treated for BRDC (control [CONT]; n = 10), calves treated with antimicrobials once for BRDC (1T; n = 16), calves treated twice for BRDC (2T; n = 13), calves treated 3 times for BRDC (3T; n = 14), or calves treated 4 times for BRDC (4T; n = 13). Samples were also collected each time animals received antimicrobial treatment; animals within a group were further sorted by calves that recovered and calves that died to test histone cytotoxicity. Bovine kidney cells were cultured in duplicate in 96-well plates and exposed to 0 or 50 μg/mL of total histones for 18 h with 1% serum from each animal. Cell viability was assessed by the addition of resazurin for 6 h followed by fluorescent quantification. Fluorescent values from serum alone were subtracted from values obtained for histone treatment for each animal. Serum from CONT, 1T, and 2T at initial processing all exhibited a similar (P > 0.10) response to histone treatment with fluorescent values of –312 ± 557, –1,059 ± 441, and –975 ± 489, respectively. However, 3T and 4T demonstrated an impaired capacity (P < 0.05) to protect against histones (–2,778 ± 471 and –3,026 ± 489) at initial processing when compared to the other groups. When sorted by mortality within group, calves that were treated twice and recovered (–847 ± 331) demonstrated a greater (P < 0.05) protective capacity than calves that were treated twice and died (–2,264 ± 412), indicating that calves that contract BRDC and ultimately die might have reduced protective capacity against histone cytotoxicity. Results suggest that calves that require multiple treatments for BRDC have reduced ability to protect against cytotoxicity of histones. Understanding the primary mechanism responsible for protecting against histone cytotoxicity could lead to improved identification of animals susceptible to severe cases of BRDC, improved focus and use of available resources, or better treatments for severe cases of BRDC.


2019 ◽  
Vol 8 (10) ◽  
pp. 1580 ◽  
Author(s):  
Kyoung Min Moon ◽  
Kyueng-Whan Min ◽  
Mi-Hye Kim ◽  
Dong-Hoon Kim ◽  
Byoung Kwan Son ◽  
...  

Ninety percent of patients with scrub typhus (SC) with vasculitis-like syndrome recover after mild symptoms; however, 10% can suffer serious complications, such as acute respiratory failure (ARF) and admission to the intensive care unit (ICU). Predictors for the progression of SC have not yet been established, and conventional scoring systems for ICU patients are insufficient to predict severity. We aimed to identify simple and robust indicators to predict aggressive behaviors of SC. We evaluated 91 patients with SC and 81 non-SC patients who were admitted to the ICU, and 32 cases from the public functional genomics data repository for gene expression analysis. We analyzed the relationships between several predictors and clinicopathological characteristics in patients with SC. We performed gene set enrichment analysis (GSEA) to identify SC-specific gene sets. The acid-base imbalance (ABI), measured 24 h before serious complications, was higher in patients with SC than in non-SC patients. A high ABI was associated with an increased incidence of ARF, leading to mechanical ventilation and worse survival. GSEA revealed that SC correlated to gene sets reflecting inflammation/apoptotic response and airway inflammation. ABI can be used to indicate ARF in patients with SC and assist with early detection.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Mike Fang ◽  
Brian Richardson ◽  
Cheryl M. Cameron ◽  
Jean-Eudes Dazard ◽  
Mark J. Cameron

Abstract Background In this study, we demonstrate that our modified Gene Set Enrichment Analysis (GSEA) method, drug perturbation GSEA (dpGSEA), can detect phenotypically relevant drug targets through a unique transcriptomic enrichment that emphasizes biological directionality of drug-derived gene sets. Results We detail our dpGSEA method and show its effectiveness in detecting specific perturbation of drugs in independent public datasets by confirming fluvastatin, paclitaxel, and rosiglitazone perturbation in gastroenteropancreatic neuroendocrine tumor cells. In drug discovery experiments, we found that dpGSEA was able to detect phenotypically relevant drug targets in previously published differentially expressed genes of CD4+T regulatory cells from immune responders and non-responders to antiviral therapy in HIV-infected individuals, such as those involved with virion replication, cell cycle dysfunction, and mitochondrial dysfunction. dpGSEA is publicly available at https://github.com/sxf296/drug_targeting. Conclusions dpGSEA is an approach that uniquely enriches on drug-defined gene sets while considering directionality of gene modulation. We recommend dpGSEA as an exploratory tool to screen for possible drug targeting molecules.


Sign in / Sign up

Export Citation Format

Share Document