Effect of amino acids supply in reduced crude protein diets on performance, efficiency of mammary uptake, and transporter gene expression in lactating sows1

2012 ◽  
Vol 90 (9) ◽  
pp. 3088-3100 ◽  
Author(s):  
R. Manjarin ◽  
V. Zamora ◽  
G. Wu ◽  
J. P. Steibel ◽  
R. N. Kirkwood ◽  
...  
Animals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 729 ◽  
Author(s):  
Peter H. Selle ◽  
Juliano Cesar de Paula Dorigam ◽  
Andreas Lemme ◽  
Peter V. Chrystal ◽  
Sonia Y. Liu

: This review explores the premise that non-bound (synthetic and crystalline) amino acids are alternatives to soybean meal, the dominant source of protein, in diets for broiler chickens. Non-bound essential and non-essential amino acids can partially replace soybean meal so that requirements are still met but dietary crude protein levels are reduced. This review considers the production of non-bound amino acids, soybeans, and soybean meal and discusses the concept of reduced-crude protein diets. There is a focus on specific amino acids, including glycine, serine, threonine, and branched-chain amino acids, because they may be pivotal to the successful development of reduced-crude protein diets. Presently, moderate dietary crude protein reductions of approximately 30 g/kg are feasible, but more radical reductions compromise broiler performance. In theory, an ‘ideal’ amino acid profile would prevent this, but this is not necessarily the case in practice. The dependence of the chicken-meat industry on soybean meal will be halved if crude protein reductions in the order of 50 g/kg are attained without compromising the growth performance of broiler chickens. In this event, synthetic and crystalline, or non-bound, amino acids will become viable alternatives to soybean meal in chicken-meat production.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sonia Yun Liu ◽  
Shemil P. Macelline ◽  
Peter V. Chrystal ◽  
Peter H. Selle

AbstractThe prime purpose of this review is to explore the pathways whereby progress towards reduced-crude protein (CP) diets and sustainable chicken-meat production may be best achieved. Reduced-CP broiler diets have the potential to attenuate environmental pollution from nitrogen and ammonia emissions; moreover, they have the capacity to diminish the global chicken-meat industry’s dependence on soybean meal to tangible extents. The variable impacts of reduced-CP broiler diets on apparent amino acid digestibility coefficients are addressed. The more accurate identification of amino acid requirements for broiler chickens offered reduced-CP diets is essential as this would diminish amino acid imbalances and the deamination of surplus amino acids. Deamination of amino acids increases the synthesis and excretion of uric acid for which there is a requirement for glycine, this emphasises the value of so-called “non-essential” amino acids. Starch digestive dynamics and their possible impact of glucose on pancreatic secretions of insulin are discussed, although the functions of insulin in avian species require clarification. Maize is probably a superior feed grain to wheat as the basis of reduced-CP diets; if so, the identification of the underlying reasons for this difference should be instructive. Moderating increases in starch concentrations and condensing dietary starch:protein ratios in reduced-CP diets may prove to be advantageous as expanding ratios appear to be aligned to inferior broiler performance. Threonine is specifically examined because elevated free threonine plasma concentrations in birds offered reduced-CP diets may be indicative of compromised performance. If progress in these directions can be realised, then the prospects of reduced-CP diets contributing to sustainable chicken-meat production are promising.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 281-282
Author(s):  
Cedrick N Shili ◽  
Mohammad Habibi ◽  
Julia Sutton ◽  
Jessie Barnes ◽  
Jacob Burchkonda ◽  
...  

Abstract Moderately low protein (MLP) diets can help decrease nutrient excretion from the swine production. However, MLP diets negatively impact growth performance. We hypothesized that supplementing MLP diets with phytogenics may reduce the negative effects of these diets on growth. The objective of this study was to investigate the effect of a phytogenic water additive (PWA; Herbanimal®) on growth performance, blood metabolite and gene expression of amino acids transporters in pigs fed with MLP diets. Forty-eight weaned barrows were allotted to six dietary treatments (n = 8) for 4 weeks: >CON-NS: standard protein diet-no PWA; CON-LS: standard protein diet-low PWA dose (4 ml/L); CON-HS: standard protein diet-high PWA dose (8 ml/L); LP-NS: low protein diet-no PWA; LP-LS: low protein diet-low PWA dose (4 ml/L); LP-HS: low protein diet- high PWA dose (8 ml/L). Feed intake and body weight were recorded daily and weekly, respectively. At week 4, blood and tissue samples were collected and analyzed for metabolites using a chemistry analyzer and amino acid transporters using qPCR, respectively. The data were analyzed by univariate GLM (SPSS®) and the means were separated using paired Student’s t-test corrected by Benjamini-Hochberg. Pigs fed CON-HS improved the average daily gain and serum calcium and phosphorus concentrations compared to CON-NS. Pigs fed LP-LS had higher serum phosphorus and blood urea nitrogen compared to the pigs fed with LP-NS. The mRNA abundance of SLC7A11 in the jejunum was lower in CON-LS and CON-HS compared to CON-NS. Additionally, mRNA abundance of SLC6A19 in the jejunum of pigs fed with LP-LS was higher compared to LP-NS and lower in CON-HS relative to pigs fed with CON-LS. In conclusion, PWA improved the growth performance of pigs fed standard protein diets but not low protein diets. Further, the PWA improved the concentrations of blood calcium and phosphorous in pigs fed MLP diets. Funding: Agrivida and Animal Health and Production and Animal Products: Improved Nutritional Performance, Growth, and Lactation of Animals from the USDA-NIFA.


1999 ◽  
Vol 1999 ◽  
pp. 24-24
Author(s):  
P A Lee ◽  
A Armsby

Formulating diets to match more closely the requirements of the pig for amino acids results in diets which are lower in crude protein (CP) than conventional commercial diets. The lower intake of nitrogen (N) which is concomitant with these diets results on lower N excretion. The excretion of excess N requires energy and previous nutrient balance work undertaken at Terrington (Lee and Kay, 1998) indicated that the ‘energy sparing’ effect of the reduced crude protein diets can be utilised by reducing the digestible energy (DE) content of reduced CP diets whilst at the same time maintaining the level of N retention. The objective of this work was to determine the performance carcass characteristics and slurry characteristics of growing/finishing pigs given reduced CP/DE diets.


1971 ◽  
Vol 11 (53) ◽  
pp. 619 ◽  
Author(s):  
W Turner ◽  
GG Payne

High protein wheat was the sole cereal in 20 and 25 per cent crude protein broiler starter diets. On the. 25 per cent protein diet, performance was maximized without amino acid supplementation. Using high protein wheat in 20 per cent protein diets, growth rate was improved by l-lysine supplementation of 0.3 per cent. However, this growth rate was not at a maximum level. Some other dietary factor was necessary, and this did not appear to be essential amino acids, singly or in combination.


Sign in / Sign up

Export Citation Format

Share Document