scholarly journals Experimental Investigation of The Influence of Mechanical Forced Vibrations and Heat Flux on Coefficient of Heat Transfer

2018 ◽  
Vol 6 (3) ◽  
pp. 124-129
Author(s):  
Adil Bash ◽  
Aadel Alkumait ◽  
Hamza Yaseen

The aim of this paper to verify the influence of vertical forced vibration on the coefficient of heat transfer of the laminar internal flow in a spiral fluted tube. With adopted the water as a working fluid, and flowing Reynolds numbers at the entrance between 228 and 1923, the tube heated under constant heat flux levels ranging from 618-3775 W/m2. The frequencies of vibration ranging from 13 to 30 Hz, and the amplitudes of vibration from 0.001 to 0.002 mm. The results appeared that the coefficient of heat transfer significantly affected by mechanical forced vibration in a flowing of the heated tube. When the vibration amplitude increases, the Nusselt number Significantly increases, with the maximum increases of 8.4% at the amplitude of vibration 0.0022 mm and the frequency 13 Hz. Generally, the coefficient of heat transfer increases with increasing Reynolds number and heat flux. At last, by using the parameters of vibration amplitude, frequency, heat flux and Reynolds number, a new correlation has been derived depends on experimental data.

1987 ◽  
Vol 109 (1) ◽  
pp. 37-42 ◽  
Author(s):  
J. W. Baughn ◽  
M. A. Hoffman ◽  
R. K. Takahashi ◽  
Daehee Lee

The heat transfer downstream of an axisymmetric abrupt expansion in a pipe in the transition Reynolds number regime has been investigated experimentally. In these experiments the wall of the downstream pipe was heated to give a constant heat flux into the air flow. The ratio of the upstream to downstream pipe diameters was 0.8 and the downstream Reynolds number ranged from 1420 to 8060. Within a narrow range of Reynolds numbers, around 5000, the position of the maximum Nusselt number was found to shift considerably. This interesting behavior may be associated with the flow instabilities in sudden expansions which have been observed by others.


2014 ◽  
Vol 22 (01) ◽  
pp. 1450005 ◽  
Author(s):  
SHUICHI TORII

This paper aims to study the convective heat transfer behavior of aqueous suspensions of nanoparticles flowing through a horizontal tube heated under constant heat flux condition. Consideration is given to the effects of particle concentration and Reynolds number on heat transfer enhancement and the possibility of nanofluids as the working fluid in various heat exchangers. It is found that (i) significant enhancement of heat transfer performance due to suspension of nanoparticles in the circular tube flow is observed in comparison with pure water as the working fluid, (ii) enhancement is intensified with an increase in the Reynolds number and the nanoparticles concentration, and (iii) substantial amplification of heat transfer performance is not attributed purely to the enhancement of thermal conductivity due to suspension of nanoparticles.


Author(s):  
Preeti Mani ◽  
Ruander Cardenas ◽  
Vinod Narayanan

Submerged jet impingement boiling has the potential to enhance pool boiling heat transfer rates. In most practical situations, the surface could consist of multiple heat sources that dissipate heat at different rates resulting in a surface heat flux that is non-uniform. This paper discusses the effect of submerged jet impingement on the wall temperature characteristics and heat transfer for a non-uniform heat flux. A mini-jet is caused to impinge on a polished silicon surface from a nozzle having an inner diameter of 1.16 mm. A 25.4 mm diameter thin-film circular serpentine heater, deposited on the bottom of the silicon wafer, is used to heat the surface. Deionized degassed water is used as the working fluid and the jet and pool are subcooled by 20°C. Voltage drop between sensors leads drawn from the serpentine heater are used to identify boiling events. Heater surface temperatures are determined using infrared thermography. High-speed movies of the boiling front are recorded and used to interpret the surface temperature contours. Local heat transfer coefficients indicate significant enhancement upto radial locations of 2.6 jet diameters for a Reynolds number of 2580 and upto 6 jet diameters for a Reynolds number of 5161.


Author(s):  
Yasir M. Shariff ◽  
T. S. Ravigururajan

Experimental results from single-phase refrigerant mixture flow in smooth and micro-coil enhanced meso-channels are presented. R-407C — a mixture of R-32 (23%)/R-125 (25%)/R-134a (52%) — is used as the working fluid and different micro-coils are used in conjunction with two meso-channels (2.78mm and 3.97 mm) to obtain distinct roughness parameters. The flow was varied over a range of Reynolds numbers and experiments were conducted over a heat flux range of 2 to 11 kW/m2. The heat transfer coefficient was found to be dependent on both the heat flux as well as mass flux levels. Results show that heat transfer characteristics are comparable to R-113, and that micro-coil inserts enhanced the heat transfer performance compared to the performance in smooth meso-channels.


Author(s):  
Eric B. Ratts ◽  
Atul G. Raut

This paper addresses the thermodynamic optimum of single-phase convective heat transfer in fully developed flow for uniform and constant heat flux. The optimal Reynolds number is obtained using the entropy generation minimization (EGM) method. Entropy generation due to viscous dissipation and heat transfer dissipation in the flow passage are summed, and then minimized with respect to Reynolds number based on hydraulic diameter. For fixed mass flow rate and fixed total heat transfer rate, and the assumption of uniform heat flux, an optimal Reynolds number for laminar as well as turbulent flow is obtained. In addition, the method quantifies the flow irreversibilities. It was shown that the ratio of heat transfer dissipation to viscous dissipation at minimum entropy generation was 5:1 for laminar flow and 29:9 for turbulent flow. For laminar flow, the study compared non-circular cross-sections to the circular cross-section. The optimal Reynolds number was determined for the following cross-sections: square, equilateral triangle, and rectangle with aspect ratios of two and eight. It was shown that the rectangle with the higher aspect ratio had the smallest optimal Reynolds number, the smallest entropy generation number, and the smallest flow length.


Author(s):  
Md. Faizan ◽  
Sukumar Pati ◽  
Pitamber R Randive

In this paper, the effect of non-uniform heating on the conjugate thermal and hydraulic characteristics for Al2O3–water nanofluid flow through a converging duct is examined numerically. An Eulerian–Lagrangian model is employed to simulate the two-phase flow for the following range of parameters: Reynolds number (100 ≤ Re ≤ 800), nanoparticle volume fraction (0% ≤  ϕ ≤ 5%) and amplitude of the sinusoidal heat flux ( A = 0, 0.5 and 1). The results reveal a similar affinity between the applied heat flux and local Nusselt number variation qualitatively, mainly at the middle of the duct. The results also indicate that there is a considerable enhancement of Nusselt number with the increase in Reynolds number and the thermal conductivity of wall materials. In addition, increasing the particle loading contributes to an enhanced rate of heat transfer. The heat transfer rate is lower for non-uniform heating when compared with the constant heat flux and the same can be compensated by the application of volume fraction of nanoparticles


2012 ◽  
Vol 16 (1) ◽  
pp. 239-250 ◽  
Author(s):  
Mohamed Braikia ◽  
Larbi Loukarfi ◽  
Ali Khelil ◽  
Hassan Naji

The aim of this study is to examine different blowing configurations of multiple swirling jets for use it in terminal units of ventilation applications. The influence of several parameters such as the inclined vanes of diffuser and the sense of rotation of the single or multiple swirling jets, their number and their arrangement on the flow resulting dynamically and thermally is experimentally investigated. Flow rate was adjusted at Reynolds numbers, Re0, ranging from 104 to 30.103. The current study is carried out under uniform heat flux condition for each diffuser at Reynolds number of 30.103, the air being the working fluid. Experiences concerning the fusion of several jets show that the resulting jet is clearly more homogenized under swirling influence. The findings of this study show that the gap between the jets and their sense of rotation relative to the central jet, affects the quality of the homogenization of ambiance. Among the studied different configuration, the one which consists of a swirling central jet controlling the behavior of six swirling jets in counter-rotation is shown to be the most effective in terms of thermal destratification.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
S. Xue ◽  
A. Newman ◽  
W. Ng ◽  
H. K. Moon ◽  
L. Zhang

An experimental study was performed to measure surface Nusselt number and film cooling effectiveness on a film cooled first stage nozzle guide vane (NGV) at high freestream turbulence, using a transient thin film gauge (TFG) technique. The information presented attempts to further characterize the performance of shaped hole film cooling by taking measurements on a row of shaped holes downstream of leading edge showerhead injection on both the pressure and suction surfaces (hereafter PS and SS) of a first stage NGV. Tests were performed at engine representative Mach and Reynolds numbers and high inlet turbulence intensity and large length scale at the Virginia Tech 2D Linear Transonic Cascade facility. Three exit Mach/Reynolds number conditions were tested: 1.0/1,400,000, 0.85/1,150,000, and 0.60/850,000 where Reynolds number is based on exit conditions and vane chord. At Mach/Reynolds numbers of 1.0/1,450,000 and 0.85/1,150,000, three blowing ratio conditions were tested: BR = 1.0, 1.5, and 2.0. At a Mach/Reynolds number of 0.60/850,000, two blowing ratio conditions were tested: BR = 1.5 and 2.0. All tests were performed at inlet turbulence intensity of 12% and length scale normalized by the cascade pitch of 0.28. Film cooling effectiveness and heat transfer results compared well with previously published data, showing a marked effectiveness improvement (up to 2.5×) over the showerhead-only NGV and also agreement with published showerhead-shaped hole data. Net heat flux reduction (NHFR) was shown to increase substantially (average 2.6 × ) with the addition of shaped holes with an increase (average 1.6×) in required coolant mass flow. Based on the heat flux data, the boundary layer transition location was shown to be within a consistent region on the suction side regardless of blowing ratio and exit Mach number.


Author(s):  
J. Garci´a-Gonza´lez ◽  
A. Herna´ndez-Guerrero ◽  
C. Rubio-Arana ◽  
F. Solorio-Ordaz

In this paper an analysis of the fluid flow and the heat transfer in the next generation micro-sized heat sinks is presented. The analysis includes three different geometries for the channels of the heat sinks: rectangular, triangular and trapezoidal, with water as the cooling work flow. A constant heat flux typical of the current high-intensive computational chips (such as the current Pentium chips) is applied at the bottom of the heat sink in a small 1 cm × 1 cm area, an area also typical of the current contact area between electronic devices and the heat dissipaters. The analysis aims to determine the effect of geometry at microscopic scales. It is found that the temperature at the bottom of the dissipater increases approximately in a linear fashion and that by increasing the Reynolds number this temperature decreases. On the contrary, by having a decay in the Reynolds number the temperature of the working fluid increases, bringing a decrease in the viscosity allowing in turn a decrease in the friction losses since the friction coefficient decreases.


1981 ◽  
Vol 103 (3) ◽  
pp. 415-422 ◽  
Author(s):  
S. C. Lau ◽  
E. M. Sparrow ◽  
J. W. Ramsey

A systematic experimental study was carried out to determine how the heat transfer characteristics of a turbulent tube flow are affected by the length and diameter of a cylindrical plenum chamber which delivers fluid to the tube. The net pressure loss due to the presence of the plenum was also measured. The experimental arrangement was such that the fluid experiences a consecutive expansion and contraction in the plenum before entering the electrically heated test section. Air was the working fluid, and the Reynolds number was varied over the range from 5,000 to 60,000. It was found that at axial stations in the upstream portion of the tube, there are substantially higher heat transfer coefficients in the presence of longer plenums. Thus, a longer plenum functions as an enhancement device. On the other hand, the plenum diameter appears to have only a minor influence in the range investigated (i.e., plenum diameters equal to three and six times the tube diameter). The fully developed Nusselt numbers are independent of the plenum length and diameter. With longer plenums in place, the thermal entrance length showed increased sensitivity to Reynolds number in the fully turbulent regime. The pressure loss coefficient, which compares the plenum-related pressure loss with the velocity head in the tube, increases more or less linearly with the plenum length. With regard to experimental technique, it was demonstrated that guard heating/cooling of the electrical bus adjacent to the tube inlet is necessary for accurate heat transfer results at low Reynolds numbers but, although desirable, is less necessary at higher Reynolds numbers.


Sign in / Sign up

Export Citation Format

Share Document