scholarly journals Optical Control of Glycerolipids and Sphingolipids

2021 ◽  
Vol 75 (12) ◽  
pp. 1022-1025
Author(s):  
Dirk Trauner ◽  
Johannes Morstein

Glycerolipids, sphingolipids, and sterols are the three major classes of membrane lipids. Both glycerolipids and sphingolipids are comprised of combinations of polar headgroups and fatty acid tails. The fatty acid tail can be chemically modified with an azobenzene photoswitch giving rise to photoswitchable lipids. This approach has yielded a number of photopharmacological tools that allow for the control various of aspects of lipid assembly, metabolism, and physiology with light.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zolian S. Zoong Lwe ◽  
Ruth Welti ◽  
Daniel Anco ◽  
Salman Naveed ◽  
Sachin Rustgi ◽  
...  

AbstractUnderstanding the changes in peanut (Arachis hypogaea L.) anther lipidome under heat stress (HT) will aid in understanding the mechanisms of heat tolerance. We profiled the anther lipidome of seven genotypes exposed to ambient temperature (AT) or HT during flowering. Under AT and HT, the lipidome was dominated by phosphatidylcholine (PC), phosphatidylethanolamine (PE), and triacylglycerol (TAG) species (> 50% of total lipids). Of 89 lipid analytes specified by total acyl carbons:total carbon–carbon double bonds, 36:6, 36:5, and 34:3 PC and 34:3 PE (all contain 18:3 fatty acid and decreased under HT) were the most important lipids that differentiated HT from AT. Heat stress caused decreases in unsaturation indices of membrane lipids, primarily due to decreases in highly-unsaturated lipid species that contained 18:3 fatty acids. In parallel, the expression of Fatty Acid Desaturase 3-2 (FAD3-2; converts 18:2 fatty acids to 18:3) decreased under HT for the heat-tolerant genotype SPT 06-07 but not for the susceptible genotype Bailey. Our results suggested that decreasing lipid unsaturation levels by lowering 18:3 fatty-acid amount through reducing FAD3 expression is likely an acclimation mechanism to heat stress in peanut. Thus, genotypes that are more efficient in doing so will be relatively more tolerant to HT.


2010 ◽  
Vol 23 (1) ◽  
pp. 3-17 ◽  
Author(s):  
P. Mayzaud ◽  
S. Lacombre ◽  
M. Boutoute

AbstractChanges in adult weight, lipid and fatty acid composition per lipid class were studied over a complete seasonal cycle in Drepanopus pectinatus Brady. This copepod displayed a strong seasonality in adult individual weight and total lipid content. Stages C3 to adult from a summer cohort were compared in terms of lipid and fatty acid structure. Changes in lipid content were related to wax esters and polar lipids (PL) while triacylglycerols (TAG) and cholesterol remained minor constituents except at the end of winter. Changes in fatty acid composition of different lipid classes showed that food limitation in winter was high enough to affect 22:6n-3 (DHA) content in PL, and provoke accumulation of maximal percentages of bacterial marker as branched acids. Composition of TAG followed closely the changes in trophic interactions as diatom and flagellate markers dominated in spring and summer while bacterial and detritus particle markers dominated in late winter. The composition of wax esters followed the same seasonal succession but with a lower level of turn over time and shifted characteristics (bacterial markers) from winter to spring individuals when compared to TAG. Ontogenetic changes showed high triacylglycerols content in younger C3 stages and increasing wax esters with increasing developmental stages. Fatty acid composition of PL showed low percentages of EPA and DHA in stage C3, and recovery of high levels of DHA for stage C4 or 20:5n-3 (EPA) at stage C5. The same trend was observed for 18:4n-3. The reverse pattern was noted for the n-6 polyunsaturated acids (PUFA) suggesting a greater requirement in younger stages. Fatty acid partitioning between neutral and PL suggested essential fatty acids selective incorporation from neutral classes into membrane lipids.


2016 ◽  
Vol 8 (9) ◽  
pp. 71 ◽  
Author(s):  
Yuanyuan Guo ◽  
Shanshan Liu ◽  
Zhen Yang ◽  
Shanshan Tian ◽  
Na Sui

<p>Low temperature is a major factor limiting the productivity and geographical distribution of many plant species. In this study, we investigated the effect of chilling stress (10 <sup>o</sup>C) on seedling growth in two sweet sorghum (<em>Sorghum bicolor </em>(L.) Moench) inbred lines (M-81E and Roma). Results showed that the chilling resistance of M-81E was higher than that of Roma. The Fv/Fm in leaves of M-81E decreased less than that of Roma during chilling stress. After 24 h of chilling stress, the Fv/Fm of M-81E and Roma decreased by 24.3 and 45.8%, respectively. Fo was also affected significantly during chilling stress. Malondialdehyde (MDA), an indicator of lipid peroxidation caused by ROS, increased during chilling stress. The contents of MDA increased less in leaves of M-81E than that in Roma under chilling stress. The antioxidant enzymes (SOD and APX) activity of M-81E was higher than those of Roma during chilling stress. The unsaturated fatty acid content and the double bond index (DBI) of major membrane lipids of MGDG, DGDG, SQDG, PC, PE and PG of M-81E significantly increased after 24 h of chilling treatment (10 <sup>o</sup>C). The DBI of MGDG, DGDG, SQDG, PC and PG of Roma significantly decreased. These results showed that the chilling tolerance of M-81E was higher than that of Roma by increasing of unsaturated fatty acid in membrane lipid and powerful protective enzyme system at seedling stage.</p>


Blood ◽  
1998 ◽  
Vol 91 (1) ◽  
pp. 64-74 ◽  
Author(s):  
Roland Brinckmann ◽  
Kerstin Schnurr ◽  
Dagmar Heydeck ◽  
Thomas Rosenbach ◽  
Gerhard Kolde ◽  
...  

Abstract Mammalian 15-lipoxygenases, which have been implicated in the differentiation of hematopoietic cells are commonly regarded as cytosolic enzymes. Studying the interaction of the purified rabbit reticulocyte 15-lipoxygenase with various types of biomembranes, we found that the enzyme binds to biomembranes when calcium is present in the incubation mixture. Under these conditions, an oxidation of the membrane lipids was observed. The membrane binding was reversible and led to an increase in the fatty acid oxygenase activity of the enzyme. To find out whether such a membrane binding also occurs in vivo, we investigated the intracellular localization of the enzyme in stimulated and resting hematopoietic cells by immunoelectron microscopy, cell fractionation studies and activity assays. In rabbit reticulocytes, the 15-lipoxygenase was localized in the cytosol, but also bound to intracellular membranes. This membrane binding was also reversible and the detection of specific lipoxygenase products in the membrane lipids indicated the in vivo activity of the enzyme on endogenous substrates. Immunoelectron microscopy showed that in interleukin-4 –treated monocytes, the 15-lipoxygenase was localized in the cytosol, but also at the inner side of the plasma membrane and at the cytosolic side of intracellular vesicles. Here again, cell fractionation studies confirmed the in vivo membrane binding of the enzyme. In human eosinophils, which constitutively express the 15-lipoxygenase, the membrane bound share of the enzyme was augmented when the cells were stimulated with calcium ionophore. Only under these conditions, specific lipoxygenase products were detected in the membrane lipids. These data suggest that in hematopoietic cells the cytosolic 15-lipoxygenase translocates reversibly to the cellular membranes. This translocation, which increases the fatty acid oxygenase activity of the enzyme, is calcium-dependent, but may not require a special docking protein.


Author(s):  
F A C Paton ◽  
J R Scaife ◽  
T Acamovic ◽  
D C Macdonald ◽  
A M Mackenzie

The vitamin E (Vit E) requirement of the neonatal calf is largely dependent upon its dietary intake of polyunsaturated fatty acid (PUFA) The PUFA content of neonatal calf plasma is low, the plasma triene:tetraene ratio of approximately 0.96 suggests a possible essential fatty acid deficiency, however within 3-4 days postpartum the ratio is markedly reduced to approximately 0.12 (Noble 1984). In spring-calving cows turned out to grass just prior to calving the sudden change to a diet rich in PUFA has a significant influence on the PUFA content of colostrum and milk and thus the Vit E requirement of the newborn calf. A study was conducted to examine the effects of different dietary ratios of Vit E to C18:2 on the growth performance; immunoglobulin status; fatty acid and retinol, Vit E and β-carotene profiles of blood plasma and erythrocyte membrane lipids (EML), and lipid oxidation of erythrocyte membranes. The effect of turn-out to grass on cow plasma fatty acid composition was also studied. The preliminary results of this study are presented below.


2011 ◽  
Vol 59 (6) ◽  
pp. 369 ◽  
Author(s):  
A. J. Hulbert ◽  
Sarah K. Abbott

There are four types of fatty acids but only two types are essential nutritional requirements for many animals. These are the omega-6 polyunsaturated fatty acids (n-6 PUFA) and the omega-3 polyunsaturated fatty acids (n-3 PUFA) and because they cannot be converted to one another they are separate essential dietary requirements. They are only required in small amounts in the diet and their biological importance stems largely from their role as constituents of membrane lipids. They are synthesised by plants and, as a generalisation, green leaves are the source of n-3 PUFA while seeds are the source of n-6 PUFA in the food chain. While the fatty acid composition of storage fats (triglycerides) is strongly influenced by dietary fatty acid composition, this is not the case for membrane fats. The fatty acid composition of membrane lipids is relatively unresponsive to dietary fatty acid composition, although n-3 PUFA and n-6 PUFA can substitute for each in membrane lipids to some extent. Membrane fatty acid composition appears to be regulated and specific for different species. The role of essential fats in the diet of animals on (1) basal metabolic rate, (2) thermoregulation, (3) maximum longevity, and (4) exercise performance is discussed.


Science ◽  
1969 ◽  
Vol 164 (3878) ◽  
pp. 433-434 ◽  
Author(s):  
R. N. McElhaney ◽  
M. E. Tourtellotte

Marine Drugs ◽  
2018 ◽  
Vol 16 (12) ◽  
pp. 494 ◽  
Author(s):  
Eduard Kostetsky ◽  
Natalia Chopenko ◽  
Maria Barkina ◽  
Peter Velansky ◽  
Nina Sanina

Increasing global temperatures are expected to increase the risk of extinction of various species due to acceleration in the pace of shifting climate zones. Nevertheless, there is no information on the physicochemical properties of membrane lipids that enable the adaptation of the algae to different climatic zones. The present work aimed to compare fatty acid composition and thermal transitions of membrane lipids from green macroalgae Ulva lactuca harvested in the Sea of Japan and the Adriatic Sea in summer. U. lactuca inhabiting the Adriatic Sea had bleached parts of thalli which were completely devoid of chloroplast glycolipids. The adaptation to a warmer climatic zone was also accompanied by a significant decrease in the ratio between unsaturated and saturated fatty acids (UFA/SFA) of membrane lipids, especially in bleached thalli. Hence, bleaching of algae is probably associated with the significant decrease of the UFA/SFA ratio in glycolipids. The decreasing ratio of n-3/n-6 polyunsaturated fatty acids (PUFAs) was observed in extra-plastidial lipids and only in the major glycolipid, non-lamellar monogalactosyldiacylglycerol. The opposite thermotropic behavior of non-lamellar and lamellar glycolipids can contribute to maintenance of the highly dynamic structure of thylakoid membranes of algae in response to the increasing temperatures of climatic zones.


1968 ◽  
Vol 109 (1) ◽  
pp. 51-59 ◽  
Author(s):  
G. G. Forstner ◽  
K. Tanaka ◽  
K. J. Isselbacher

1. Rat intestinal microvillus plasma membranes were prepared from previously isolated brush borders and the lipid composition was analysed. 2. The molar ratio of cholesterol to phospholipid was greatest in the membranes and closely resembled that reported for myelin. 3. Unesterified cholesterol was the major neutral lipid. However, 30% of the neutral lipid fraction was accounted for by glycerides and fatty acid. 4. Five phospholipid components were identified and measured, including phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, sphingomyelin and lysophosphatidylcholine. Though phosphatidylethanolamine was the chief phospholipid, no plasmalogen was detected. 5. In contrast with other plasma membranes in the rat, the polar lipids of the microvillus membrane were rich in glycolipid. The cholesterol:polar lipid (phospholipid+glycolipid) ratio was about 1:3 for the microvillus membrane. Published data suggest that this ratio resembles that of the liver plasma membrane more closely than myelin or the erythrocyte membrane. 6. The fatty acid composition of membrane lipids was altered markedly by a single feeding of safflower oil. Membrane polar lipids did not contain significantly more saturated fatty acids than cellular polar lipids. Differences in the proportion of some fatty acids in membrane and cellular glycerides were noted. These differences may reflect the presence of specific membrane glycerides.


Sign in / Sign up

Export Citation Format

Share Document