Conditioned medium of endometrial stromal cells from the implantation window, but not from proliferative phase, can enhance the proliferation and migration of trophoblast stem cells

Author(s):  
Hsin-Yang Li
2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Dongmei Zhu ◽  
Stefanie Hölz ◽  
Eric Metzger ◽  
Mihael Pavlovic ◽  
Anett Jandausch ◽  
...  

2020 ◽  
Vol 103 (1) ◽  
pp. 104-113
Author(s):  
Hiroyuki Tomari ◽  
Teruhiko Kawamura ◽  
Kazuo Asanoma ◽  
Katsuko Egashira ◽  
Keiko Kawamura ◽  
...  

Abstract Successful assisted reproductive technology pregnancy depends on the viability of embryos and endometrial receptivity. However, the literature has neglected effects of the endometrial environment during the proliferative phase on implantation success or failure. Human endometrial stromal cells (hESCs) were isolated from endometrial tissues sampled at oocyte retrieval during the proliferative phase from women undergoing infertility treatment. Primary hESC cultures were used to investigate the relationship between stemness and senescence induction in this population and embryo receptivity. Patients were classified as receptive or non-receptive based on their pregnancy diagnosis after embryo transfer. Biomarkers of cellular senescence and somatic stem cells were compared between each sample. hESCs from non-receptive patients exhibited significantly higher (P < 0.01) proportions of senescent cells, mRNA expressions of CDKN2A and CDKN1A transcripts (P < 0.01), and expressions of genes encoding the senescence-associated secretory phenotype (P < 0.05). hESCs from receptive patients had significantly higher (P < 0.01) mRNA expressions of ABCG2 and ALDH1A1 transcripts. Our findings suggest that stemness is inversely associated with senescence induction in hESCs and, by extension, that implantation failure in infertility treatment may be attributable to a combination of senescence promotion and disruption of this maintenance function in this population during the proliferative phase of the menstrual cycle. This is a promising step towards potentially improving the embryo receptivity of endometrium. The specific mechanism by which implantation failure is prefigured by a loss of stemness among endometrial stem cells, and cellular senescence induction among hESCs, should be elucidated in detail in the future.


2018 ◽  
Vol 315 (6) ◽  
pp. C863-C872 ◽  
Author(s):  
Qiong Chen ◽  
Yuanyuan Hang ◽  
Tingting Zhang ◽  
Li Tan ◽  
Shuangdi Li ◽  
...  

Endometriosis has been initially described as endometrial-like tissue outside of the uterine cavity. The mitogen-activated protein kinase/ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway playing an important role in the regulation of cell proliferation, apoptosis, and migration has been found to be activated in endometriosis. However, regulation of the MEK/ERK signaling pathway in endometriosis has not been fully understood. In this study, primary-cultured endometrial stromal cells were collected from patients with endometriosis and healthy controls, and the proliferation, apoptosis, and migration of ectopic endometrial stromal cells transfected with ubiquitin-specific protease 10 (USP10)-small-interfering RNA (siRNA) or pLVX-Puro-USP10 with or without MEK inhibitor PD-98059 or exogenous signaling stimulation such as epidermal growth factor (EGF) were measured by CCK-8, flow cytometry, and Transwell, respectively. The gene and protein expressions were measured by real-time PCR or Western blot. USP10 overexpression promoted ectopic endometrial stromal cell migration and proliferation, suppressed cell apoptosis, and activated MEK/ERK signaling that is a critical downstream target of the serine/threonine protein kinase Raf-1, which was significantly blocked by PD-98059. USP10 silencing demonstrated the inverse effects, and these effects induced by USP10 silencing were significantly blocked by EGF. USP10 overexpression promoted Raf-1 protein expression, but not mRNA expression, through deubiquitination. In conclusion, these results suggest that USP10 promotes proliferation and migration and inhibits apoptosis of endometrial stromal cells in endometriosis through activating the Raf-1/MEK/ERK pathway.


Author(s):  
Xiaoxia Fu ◽  
Mengyun Yao ◽  
Chaoshuang Ye ◽  
Tao Fang ◽  
Ruijin Wu

Abstract Endometriosis is generally characterized as a tumor-like disease because of its potential for distant metastasis and local tissue invasion, while whether osteopontin (OPN) plays a role in the pathogenesis of endometriosis has not been thoroughly investigated. We investigated the expression of OPN, urokinase plasminogen activator (uPA), phosphatidylinositol 3 kinase (PI3K), and phospho-PI3 kinase (p-PI3K) in endometrial stromal cells (ESCs). The serum concentration of OPN was determined by enzyme-linked immunosorbent assays (ELISA). OPN was downregulated to explore the corresponding change of uPA, p-PI3K, F-actin, and α-tubulin. The expression of OPN, uPA, PI3K, and p-PI3K was evaluated by western blot and quantitative real-time PCR (RT-qPCR) and the expression of F-actin and α-tubulin was confirmed by immunofluorescence assay. The proliferation and migration abilities of ESCs were investigated by CCK8, transwell, and wound scratch assays. Endometrial OPN, p-PI3K, and uPA expressions and serum OPN levels were increased in patients with endometriosis compared with the control. The expressions of p-PI3K, uPA, and α-tubulin were decreased by siRNA-OPN interference in ectopic ESCs. Activation and inhibition of the PI3K pathway apparently upregulate and downregulate uPA expression. Knockdown of OPN and inhibition of the PI3K pathway remarkably inhibited cell migration in ectopic ESCs. Meanwhile, activation of the PI3K pathway promoted the migration ability of ectopic ESCs. OPN may regulate the expression of uPA through the PI3K signal pathway to affect the migration ability of ESCs, indicating that OPN, uPA, and the PI3K pathway may be potential targets for interrupting development of endometriosis.


2018 ◽  
Vol 46 (1) ◽  
pp. 279-290 ◽  
Author(s):  
Dongye Yi ◽  
Wei Xiang ◽  
Qing Zhang ◽  
Yongcun Cen ◽  
Qing Su ◽  
...  

Background/Aims: Tumor vascular formation and maintenance are crucial events in glioblastoma development. Mesenchymal stem cells (MSCs) have been shown to differentiate into pericytes and contribute to neovascularization in the glioma microenvironment. Moreover, glioblastoma-derived mesenchymal stem cells (gb-MSCs), which consist of CD90-MSCs and CD90+MSCs, are a subpopulation of MSCs that are more active in glioma vascularization. However, the functions of gb-MSCs and the microRNA (miRNA) modifications in the glioblastoma microenvironment have not yet been fully elucidated. Here, we focus on the pericyte differentiation potential of gb-MSCs and miRNA modifications in gb-MSCs during new vascular formation and glioblastoma growth. Methods: In vitro, surface markers of gb-MSCs were detected by flow cytometry; the differentiation potential was evaluated by Oil Red O staining, Alizarin Red staining and Alcian blue staining; the proliferation and migration of gb-MSCs in different conditioned media were analyzed by the cck8 test and wound-healing assay, respectively; gb-MSC to pericyte transition was detected by immunofluorescence staining and western blot assay; angiogenetic capacity was analyzed by tube formation assay; and levels of cytokines in different supernatant were determined by ELISA. Additionally, RNA was isolated from gb-MSCs, and miRNA modifications were analyzed using the RAffymetrix miRNA microarray Results: We showed that glioblastoma-conditioned medium increased gb-MSC proliferation and migration and was capable of inducing gb-MSC differentiation into pericytes. Glioblastoma secreted angiogenic factors and gb-MSCs incubated in malignant glioblastoma-conditioned medium formed more tube-like structures, and these cells also adhered to tube-like vessels formed by human umbilical vein endothelial cells (HUVECs) on Matrigel to maintain tumor vascular structure in vitro. miRNA expression were also modified in gb-MSCs cultured in malignant glioblastoma-conditioned medium in vitro. Conclusion: These results provide new insight into the functional effects of a subpopulation of MSCs in glioblastoma and may help in the development of novel therapies for solid tumors.


2021 ◽  
Author(s):  
Yongwen Yang ◽  
Deying Ban ◽  
Chun Zhang ◽  
Licong Shen

Abstract Background: Endometriosis is a prevalent gynecologic disease, affecting up to 10% of women at reproductive age and approximately 50% of women with infertility. The function of circRNAs in various diseases has been highlighted. Dysregulated expression of circRNAs in endometriosis has been reported and circ_0000673 was significantly deregulated. However, its explicit role in pathogenesis of endometriosis is yet to be identified. Methods: circ_0000673 expression was detected in paried ectopic and eutopic endometrium using qPCR and fluorescent in situ hybridization. Knockdown of circ_0000673 in eutopic and normal endometrial stromal cells were done by transfection with lentivirus vectors. The proliferation activity of endometrial stromal cells was evaluated by CCK-8 assay and colony formation assay, while the migration capacity was valued by wound healing assay. PTEN, PI3K and p-AKT were detected by qPCR and western blotting. Dual luciferase assay was performed to assess the bonding between circ_0000673, PTEN and miR-616-3p.Results: The expression of circ_0000673 was reduced in ectopic endometrium. Knockdown of circ_0000673 significantly induced eutopic and normal endometrial cell proliferation and migration. Bioinformatic analysis predicted that circ_0000673 might sponge miR-616-3p. The effect of circ_0000673 knockdown could be recovered by miR-616-3p inhibitor and enhanced by miR-616-3p mimics. Meanwhile, qPCR and western blotting showed that circ_0000673 knockdown inhibited the expression of PTEN, and subsequently activated PI3K and p-Akt. Furthermore, PTEN was confirmed to be a target of miR-616-3p. Conclusion: The results demonstrated that deregulated expression of circ_0000673 could promote endometriosis progression via sponging miR-616-3p and further regulating PTEN.


2021 ◽  
Author(s):  
Yiting Wan ◽  
Cancan Gu ◽  
Jueying Kong ◽  
Jin Sui ◽  
Ling Zuo ◽  
...  

Abstract Endometriosis (EMs) is one of the most frequent diseases in reproductive age women, characterized by the growth of endometrial tissues beyond the uterus. Enhanced proliferative and migratory potential of endometrial stromal cells (ESCs) is the major cause of EMs. Mounting studies have demonstrated that long non-coding RNAs (lncRNAs) exert an important role in regulating the development and progression of EMs. Given the aberrant expression of lncRNA ADAMTS9-AS1 in ectopic endometrium (ecEM), here we investigated the biological effect of ADAMTS9-AS1 on ESCs proliferation and migration and explored the underlying mechanism. The current data showed that the ADAMTS9-AS1 expression was significantly up-regulated in ecEM compared with eutopic endometrium (euEM) in patients with EMs and in a murine model of EMs. Functionally, ADAMTS9-AS1 knockdown in ectopic ESCs (EESCs) decreased cell viability and migration, whereas ADAMTS9-AS1 overexpression in normal ESCs (NESCs) enhanced cell viability and migration. More important, the effect of ADAMTS9-AS1 inhibition on decreasing ESCs viability was significantly blocked by Ferrostatin-1 (Fer-1, a ferroptosis inhibitor), and ADAMTS9-AS1 overexpression repressed Erastin (a ferroptosis activator)-induced cell death. Furthermore, the regulatory role of ADAMTS9-AS1 in ferroptosis was defined and evidenced by increased reactive oxygen species (ROS) level and malonyl dialdehyde (MDA) content, and decreased expression of glutathione peroxidase 4 (GPX4) after ADAMTS9-AS1 inhibition. Mechanistically, ADAMTS9-AS1 functioned as a competing endogenous RNA (ceRNA) via sponging miR-6516-5p to de-repress the expression of GPX4, the critical repressor of ferroptosis. Taken together, these results demonstrate that up-regulated ADAMTS9-AS1 accelerates ESCs proliferation and migration through regulating miR-6516-5p/GPX4-dependent ferroptosis, and may be a potential target for the treatment of EMs.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
R Schneider ◽  
M Berger ◽  
P B Terraciano ◽  
D H Zanin. Gotardi ◽  
M Niad. Crispim ◽  
...  

Abstract Study question Could new molecules like Lonomia obliqua lipocalins and hemolins have cytoprotective effects on endometrial stem cells (hESC)? Summary answer Lonomia obliqua venom-induced hESC viability, proliferation and migration occurred mainly by protection against oxidative damage and ERK-dependent pathway activation What is known already Recurrent pregnancy loss (RPL) is associated with severe physical and psychological morbidity, for which there is no treatment options. The pathophysiology involves deficiency in proliferation and migration capacities of endometrial stromal cells (hESCs) impairing embryo implantation and development. Animal venoms are rich sources of bioactive molecules and despite its known toxic effects, they also have protective components such as pro-proliferative molecules, growth factor-like, anti-apoptotic and anti-oxidant. Study design, size, duration This study was an experimental in vitro with endometrial stem cells. Treatment duration was 8–72h. Every assay had control cells exposed to phosphate buffered saline (PBS). Participants/materials, setting, methods hESCs were isolated from fresh human endometrial biopsies and characterized according standard protocols. Then the effects of L. obliqua venomous secretions on cell viability, proliferation and migration were determined using MTT, wound-healing assay, sulforhodamine B (SRB) assay and measuring the immunocontent of Ki67. Venom components involved in cell enhancing effects were also identified by classical chromatographic methods and proteomic analysis. Assays were conducted in triplicate. Main results and the role of chance The hESCs in culture showed adhesiveness properties, presented a fusiform fibroblastoid morphology and ability to in vitro differentiate into adipocytes, osteocytes and chondrocytes. The expression of cell surface markers was also characterized by flow cytometry. hESCs were positive for mesenchymal markers (CD105, CD90 and CD73) and negative for hematopoietic markers (CD45 and CD11), indicating that isolated cells have potential for multilineage differentiation. L. obliqua bristle extract (LOBE) increased dose-dependently hESCs viability in a concentration range varying from 0.001 to 0.1 µg/mL, independently of the cell isolation bath. For some cell isolates (patient ID 1, 3, 4, 6 and 7) it was observed a slightly reduction in hESC viability at highest LOBE concentrations (10 µg/mL). Treatment increased hESC viability in the presence of low concentrations of fetal bovine serum (1% FBS) and even in its complete absence. This effect was long lasting, being significant up to 72 h of incubation with LOBE in serum deprivation conditions. r to identify the potential molecules involved in the cytoprotective action, a mass spectrometry-based proteomic analysis was performed. It was identified a total number of 430 proteins in LOBE and 312 proteins in L. obliqua hemolymph. Limitations, reasons for caution This study was only conducted in vitro. Wider implications of the findings: In this work we reported the identification of at least six protein classes with cytoprotective properties through proteomic analysis and isolated one fraction enriched in this cytoprotective factors. L. obliqua secretions induced increase in hESCs viability, proliferation and migration mainly by the protection against oxidative damage and ERK-dependent pathway activation. Trial registration number Not applicable


Sign in / Sign up

Export Citation Format

Share Document