Histopatological features and molecular abnormalities in thyroid tumours developed after exposure to external radiation

Author(s):  
Alghuzlan Abir
1987 ◽  
Vol 26 (03) ◽  
pp. 143-146 ◽  
Author(s):  
H. Fill ◽  
M. Oberladstätter ◽  
J. W. Krzesniak

The mean activity concentration of1311 during inhalation by the nuclear medicine personnel was measured at therapeutic activity applications of 22 GBq (600 mCi) per week. The activity concentration reached its maximum in the exhaled air of the patients 2.5 to 4 hours after oral application. The normalized maximum was between 2 • 10−5 and 2 • 10−3 Bq-m−3 per administered Bq. The mean activity concentration of1311 inhaled by the personnel was 28 to 1300 Bq-m−3 (0.8 to 35 nCi-rrf−3). From this the1311 uptake per year was estimated to be 30 to 400 kBq/a (x̄ = 250, SD = 50%). The maximum permitted uptake from air per year is, according to the German and Austrian radiation protection ordinances 22/21 µiCi/a (= 8 • 105 Bq/a). At maximum 50% and, on the average, 30% of this threshold value are reached. The length of stay of the personnel in the patient rooms is already now limited to such an extent that 10% of the maximum permissible whole-body dose for external radiation is not exceeded. Therefore, increased attention should be paid also to radiation exposure by inhalation.


2013 ◽  
Author(s):  
Nora Soumeya Fedala ◽  
Haddam Ali El Mehdi ◽  
Farida Chentli ◽  
Meriem Haddad ◽  
Lyna Akkache

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 590-P
Author(s):  
HAITAO LIU ◽  
TIMOTHY KERN

ANRI ◽  
2020 ◽  
pp. 31-44
Author(s):  
Aleksey Ekidin ◽  
Aleksey Vasil'ev ◽  
Maksim Vasyanovich ◽  
Evgeniy Nazarov ◽  
Mariya Pyshkina ◽  
...  

The article presents the results of field studies in the area of the Belarusian NPP in the pre-operational period. The «background» contents of gamma-emitting radionuclides in individual components of the environment are determined. The main array of dose rate measurements in the area of the NPP construction site is in the range 0.048 ÷ 0.089 μSv/h. External radiation in the surveyed area is formed at 96% due to 40K, 226Ra and 232Th. The information obtained can be used to correctly interpret the data of future radiation monitoring during normal operation of nuclear power plants.


Author(s):  
Rini Pauly ◽  
Catherine A. Ziats ◽  
Ludovico Abenavoli ◽  
Charles E. Schwartz ◽  
Luigi Boccuto

Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that poses several challenges in terms of clinical diagnosis and investigation of molecular etiology. The lack of knowledge on the pathogenic mechanisms underlying ASD has hampered the clinical trials that so far have tried to target ASD behavioral symptoms. In order to improve our understanding of the molecular abnormalities associated with ASD, a deeper and more extensive genetic profiling of targeted individuals with ASD was needed. Methods: The recent availability of new and more powerful sequencing technologies (third-generation sequencing) has allowed to develop novel strategies for characterization of comprehensive genetic profiles of individuals with ASD. In particular, this review will describe integrated approaches based on the combination of various omics technologies that will lead to a better stratification of targeted cohorts for the design of clinical trials in ASD. Results: In order to analyze the big data collected by assays such as whole genome, epigenome, transcriptome, and proteome, it is critical to develop an efficient computational infrastructure. Machine learning models are instrumental to identify non-linear relationships between the omics technologies and therefore establish a functional informative network among the different data sources. Conclusion: The potential advantage provided by these new integrated omics-based strategies is to better characterize the genetic background of ASD cohorts, identify novel molecular targets for drug development, and ultimately offer a more personalized approach in the design of clinical trials for ASD.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1792
Author(s):  
Debashri Manna ◽  
Devanand Sarkar

Cancer development results from the acquisition of numerous genetic and epigenetic alterations in cancer cells themselves, as well as continuous changes in their microenvironment. The plasticity of cancer cells allows them to continuously adapt to selective pressures brought forth by exogenous environmental stresses, the internal milieu of the tumor and cancer treatment itself. Resistance to treatment, either inherent or acquired after the commencement of treatment, is a major obstacle an oncologist confronts in an endeavor to efficiently manage the disease. Resistance to chemotherapy, chemoresistance, is an important hallmark of aggressive cancers, and driver oncogene-induced signaling pathways and molecular abnormalities create the platform for chemoresistance. The oncogene Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) is overexpressed in a diverse array of cancers, and its overexpression promotes all the hallmarks of cancer, such as proliferation, invasion, metastasis, angiogenesis and chemoresistance. The present review provides a comprehensive description of the molecular mechanism by which AEG-1 promotes tumorigenesis, with a special emphasis on its ability to regulate chemoresistance.


Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 251
Author(s):  
Alexandra Butzmann ◽  
Jyoti Kumar ◽  
Kaushik Sridhar ◽  
Sumanth Gollapudi ◽  
Robert S. Ohgami

Castleman disease (CD) is a rare lymphoproliferative disorder known to represent at least four distinct clinicopathologic subtypes. Large advancements in our clinical and histopathologic description of these diverse diseases have been made, resulting in subtyping based on number of enlarged lymph nodes (unicentric versus multicentric), according to viral infection by human herpes virus 8 (HHV-8) and human immunodeficiency virus (HIV), and with relation to clonal plasma cells (POEMS). In recent years, significant molecular and genetic abnormalities associated with CD have been described. However, we continue to lack a foundational understanding of the biological mechanisms driving this disease process. Here, we review all cases of CD with molecular abnormalities described in the literature to date, and correlate cytogenetic, molecular, and genetic abnormalities with disease subtypes and phenotypes. Our review notes complex karyotypes in subsets of cases, specific mutations in PDGFRB N666S in 10% of unicentric CD (UCD) and NCOA4 L261F in 23% of idiopathic multicentric CD (iMCD) cases. Genes affecting chromatin organization and abnormalities in methylation are seen more commonly in iMCD while abnormalities within the mitogen-activated protein kinase (MAPK) and interleukin signaling pathways are more frequent in UCD. Interestingly, there is a paucity of genetic studies evaluating HHV-8 positive multicentric CD (HHV-8+ MCD) and POEMS-associated CD. Our comprehensive review of genetic and molecular abnormalities in CD identifies subtype-specific and novel pathways which may allow for more targeted treatment options and unique biologic therapies.


Author(s):  
Thara Tunthanathip ◽  
Surasak Sangkhathat ◽  
Kanet Kanjanapradit

Abstract Background Malignant transformation (MT) of low-grade gliomas changes dramatically the natural history to poor prognosis. Currently, factors associated with MT of gliomas have been inconclusive, in particular, diffuse astrocytoma (DA). Objective The present study aims to explore the molecular abnormalities related to MT in the same patients with different MT stages. Methods Twelve specimens from five DA patients with MT were genotyped using next-generation sequencing (NGS) to identify somatic variants in different stages of MT. We used cross-tabulated categorical biological variables and compared the mean of continuous variables to assess for association with MT. Results Ten samples succussed to perform NGS from one male and four females, with ages ranging from 28 to 58 years. The extent of resection was commonly a partial resection following postoperative temozolomide with radiotherapy in 25% of cases. For molecular findings, poly-T-nucleotide insertion in isocitrate dehydrogenase 1 (IDH1) was significantly related to MT as a dose–response relationship (Mann–Whitney's U test, p = 0.02). Also, mutations of KMT2C and GGT1 were frequently found in the present cohort, but those did not significantly differ between the two groups using Fisher's exact test. Conclusion In summary, we have identified a novel relationship between poly-T insertion polymorphisms that established the pathogenesis of MT in DA. A further study should be performed to confirm the molecular alteration with more patients.


Blood ◽  
1993 ◽  
Vol 82 (2) ◽  
pp. 343-362 ◽  
Author(s):  
CH Pui ◽  
FG Behm ◽  
WM Crist

Abstract Immunologic marker studies of the lymphoid leukemias have greatly improved the precision of diagnosis of these disorders by providing specific information regarding the lineage and stage of maturation of the malignant cells. Such studies have also enhanced our understanding of normal lymphocyte development, permitting reproducible identification of lymphoid cells in discrete developmental stages. By elucidating the functions of lymphoid cell differentiation antigens, it has been possible to gain insight into the signal transduction mechanisms by which these cells interact among themselves and with other cell types. Similar studies have shown that ALL is an immunophenotypically heterogeneous disease with clinically important subtypes representing clonal expansions of lymphoblasts at different stages of maturation. Furthermore, successful correlation of immunophenotype with certain karyotypic and molecular abnormalities, which appear to underlie most or all leukemias, were made possible by the inclusion of immunologic marker assessment. Interestingly, many of these phenotype-related abnormalities have involved either the Ig or TCR genes, thus providing additional clues to the mechanisms of leukemogenesis. Knowledge of the immunologic features of leukemic cells has been essential for the generation of phenotype-specific response data in the context of modern therapy for ALL. With wider use of intensive treatment, the traditional prognostic distinctions among immunophenotypes have begun to disappear; however, certain classes of agents have more favorable toxicity/efficacy ratios against some immunophenotypes than others, justifying continued efforts to target therapy by immunologic species of ALL. Antibody-toxin conjugates, or immunotoxins, have induced complete responses in preliminary trials and may prove clinically useful, perhaps in combination with chemotherapy, if their toxic side effects can be controlled. Finally, immunologic markers may serve as sensitive targets for the detection of minimal residual disease; the clinical usefulness of this approach will depend on prospective comparisons with molecular methods.


Blood ◽  
2008 ◽  
Vol 111 (7) ◽  
pp. 3735-3741 ◽  
Author(s):  
Catherine Roche-Lestienne ◽  
Lauréline Deluche ◽  
Sélim Corm ◽  
Isabelle Tigaud ◽  
Sami Joha ◽  
...  

Abstract Acquired molecular abnormalities (mutations or chromosomal translocations) of the RUNX1 transcription factor gene are frequent in acute myeloblastic leukemias (AMLs) and in therapy-related myelodysplastic syndromes, but rarely in acute lymphoblastic leukemias (ALLs) and chronic myelogenous leukemias (CMLs). Among 18 BCR-ABL+ leukemias presenting acquired trisomy of chromosome 21, we report a high frequency (33%) of recurrent point mutations (4 in myeloid blast crisis [BC] CML and one in chronic phase CML) within the DNA-binding region of RUNX1. We did not found any mutation in de novo BCR-ABL+ ALLs or lymphoid BC CML. Emergence of the RUNX1 mutations was detected at diagnosis or before the acquisition of trisomy 21 during disease progression. In addition, we also report a high frequency of cryptic chromosomal RUNX1 translocation to a novel recently described gene partner, PRDM16 on chromosome 1p36, for 3 (21.4%) of 14 investigated patients: 2 myeloid BC CMLs and, for the first time, 1 therapy-related BCR-ABL+ ALL. Two patients presented both RUNX1 mutations and RUNX1-PRDM16 fusion. These events are associated with a short survival and support the concept of a cooperative effect of BCR-ABL with molecular RUNX1 abnormalities on the differentiation arrest phenotype observed during progression of CML and in BCR-ABL+ ALL.


Sign in / Sign up

Export Citation Format

Share Document