scholarly journals Supplementation of a high-fat diet with acesulfame-k results in sex-specific effects on insulin concentrations and adipose tissue morphology and gene expression in C57BL6 mice

Author(s):  
Clare M Reynolds
Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Rieko Takanabe ◽  
Koh Ono ◽  
Tomohide Takaya ◽  
Takahiro Horie ◽  
Hiromichi Wada ◽  
...  

Obesity is the result of an expansion and increase in the number of individual adipocytes. Since changes in gene expression during adipocyte differentiation and hypertrophy are closely associated with insulin resistance and cardiovascular diseases, further insight into the molecular basis of obesity is needed to better understand obesity-associated diseases. MicroRNAs (miRNAs) are approximately 17–24nt single stranded RNA, that post-transcriptionally regulate gene expression. MiRNAs control cell growth, differentiation and metabolism, and may be also involved in pathogenesis and pathophysiology of diseases. It has been proposed that miR-143 plays a role in the differentiation of preadipocytes into mature adipocytes in culture. However, regulated expression of miR-143 in the adult adipose tissue during the development of obesity in vivo is unknown. To solve this problem, C57BL/6 mice were fed with either high-fat diet (HFD) or normal chow (NC). Eight weeks later, severe insulin resistance was observed in mice on HFD. Body weight increased by 35% and the mesenteric fat weight increased by 3.3-fold in HFD mice compared with NC mice. We measured expression levels of miR-143 in the mesenteric fat tissue by real-time PCR and normalized with those of 5S ribosomal RNA. Expression of miR-143 in the mesenteric fat was significantly up-regulated (3.3-fold, p<0.05) in HFD mice compared to NC mice. MiR-143 expression levels were positively correlated with body weight (R=0.577, p=0.0011) and the mesenteric fat weight (R=0.608, p=0.0005). We also measured expression levels in the mesenteric fat of PPARγ and AP2, whose expression are deeply involved in the development of obesity, insulin resistant and arteriosclerosis. The expression levels of miR-143 were closely correlated with those of PPARγ (R=0.600, p=0.0040) and AP2 (R=0.630, p=0.0022). These findings provide the first evidence for up-regulated expression of miR-143 in the mesenteric fat of HFD-induced obese mice, which might contribute to regulated expression of genes involved in the pathophysiology of obesity.


2020 ◽  
Vol 44 (11) ◽  
pp. 2323-2334
Author(s):  
Belén Chanclón ◽  
Yanling Wu ◽  
Milica Vujičić ◽  
Marco Bauzá-Thorbrügge ◽  
Elin Banke ◽  
...  

Abstract Background/objectives Visceral adiposity is associated with increased diabetes risk, while expansion of subcutaneous adipose tissue may be protective. However, the visceral compartment contains different fat depots. Peripancreatic adipose tissue (PAT) is an understudied visceral fat depot. Here, we aimed to define PAT functionality in lean and high-fat-diet (HFD)-induced obese mice. Subjects/methods Four adipose tissue depots (inguinal, mesenteric, gonadal, and peripancreatic adipose tissue) from chow- and HFD-fed male mice were compared with respect to adipocyte size (n = 4–5/group), cellular composition (FACS analysis, n = 5–6/group), lipogenesis and lipolysis (n = 3/group), and gene expression (n = 6–10/group). Radioactive tracers were used to compare lipid and glucose metabolism between these four fat depots in vivo (n = 5–11/group). To determine the role of PAT in obesity-associated metabolic disturbances, PAT was surgically removed prior to challenging the mice with HFD. PAT-ectomized mice were compared to sham controls with respect to glucose tolerance, basal and glucose-stimulated insulin levels, hepatic and pancreatic steatosis, and gene expression (n = 8–10/group). Results We found that PAT is a tiny fat depot (~0.2% of the total fat mass) containing relatively small adipocytes and many “non-adipocytes” such as leukocytes and fibroblasts. PAT was distinguished from the other fat depots by increased glucose uptake and increased fatty acid oxidation in both lean and obese mice. Moreover, PAT was the only fat depot where the tissue weight correlated positively with liver weight in obese mice (R = 0.65; p = 0.009). Surgical removal of PAT followed by 16-week HFD feeding was associated with aggravated hepatic steatosis (p = 0.008) and higher basal (p < 0.05) and glucose-stimulated insulin levels (p < 0.01). PAT removal also led to enlarged pancreatic islets and increased pancreatic expression of markers of glucose-stimulated insulin secretion and islet development (p < 0.05). Conclusions PAT is a small metabolically highly active fat depot that plays a previously unrecognized role in the pathogenesis of hepatic steatosis and insulin resistance in advanced obesity.


2004 ◽  
Vol 286 (6) ◽  
pp. E891-E895 ◽  
Author(s):  
Kamal Rahmouni ◽  
Allyn L. Mark ◽  
William G. Haynes ◽  
Curt D. Sigmund

Adipose tissue represents an important source of angiotensinogen (AGT). We investigated the effect of obesity induced by a high-fat diet on the expression of mouse (mAGT) and human AGT (hAGT) genes in liver, kidney, and heart and different adipose depots in normal mice (C57BL/6J), and in transgenic mice expressing the hAGT gene under the control of its own promoter. Mice were fed a high-fat diet (45% kcal) or normal chow (10% kcal) for 10 and 20 wk. The expression of mAGT and hAGT mRNA was quantified using an RNAse protection assay. Mice on the high-fat diet exhibited increased weight, fat mass, and plasma leptin. Expression of mAGT or hAGT genes was not affected by high-fat diet in nonadipose tissues, brown adipose tissue, or subcutaneous white fat. In contrast, high-fat diet increased both mAGT and hAGT gene expression in visceral adipose depots (omental, reproductive, and perirenal fat). Thus obesity-induced by a high-fat diet is associated with a tissue-specific increased expression of both mouse and human AGT genes in intra-abdominal adipose tissue. Our findings also suggest that 1.2 kb of regulatory sequences present in the hAGT transgene are sufficient to transcriptionally respond to a high-fat diet in an adipose-specific and depot-specific manner.


2005 ◽  
Vol 21 (3) ◽  
pp. 343-350 ◽  
Author(s):  
Daisuke Hishikawa ◽  
Yeon-Hee Hong ◽  
Sang-gun Roh ◽  
Hisae Miyahara ◽  
Yukihiko Nishimura ◽  
...  

The factors that control fat deposition in adipose tissues are poorly understood. It is known that visceral adipose tissues display a range of biochemical properties that distinguish them from adipose tissues of subcutaneous origin. However, we have little information on gene expression, either in relation to fat deposition or on interspecies variation in fat deposition. The first step in this study was to identify genes expressed in fat depot of cattle using the differential display RT-PCR method. Among the transcripts identified as having differential expression in the two adipose tissues were cell division cycle 42 homolog (CDC42), prefoldin-5, decorin, phosphate carrier, 12S ribosomal RNA gene, and kelch repeat and BTB domain containing 2 (Kbtbd2). In subsequent experiments, we determined the expression levels of these latter genes in the pig and in mice fed either a control or high-fat diet to compare the regulation of fat accumulation in other animal species. The levels of CDC42 and decorin mRNA were found to be higher in visceral adipose tissue than in subcutaneous adipose tissue in cattle, pig, and mice. However, the other genes studied did not show consistent expression patterns between the two tissues in cattle, pigs, and mice. Interestingly, all genes were upregulated in subcutaneous and/or visceral adipose tissues of mice fed the high-fat diet compared with the control diet. The data presented here extend our understanding of gene expression in fat depots and provide further proof that the mechanisms of fat accumulation differ significantly between animal species.


2016 ◽  
Vol 310 (11) ◽  
pp. E886-E899 ◽  
Author(s):  
Pia Kiilerich ◽  
Lene Secher Myrmel ◽  
Even Fjære ◽  
Qin Hao ◽  
Floor Hugenholtz ◽  
...  

Female C57BL/6J mice were fed a regular low-fat diet or high-fat diets combined with either high or low protein-to-sucrose ratios during their entire lifespan to examine the long-term effects on obesity development, gut microbiota, and survival. Intake of a high-fat diet with a low protein/sucrose ratio precipitated obesity and reduced survival relative to mice fed a low-fat diet. By contrast, intake of a high-fat diet with a high protein/sucrose ratio attenuated lifelong weight gain and adipose tissue expansion, and survival was not significantly altered relative to low-fat-fed mice. Our findings support the notion that reduced survival in response to high-fat/high-sucrose feeding is linked to obesity development. Digital gene expression analyses, further validated by qPCR, demonstrated that the protein/sucrose ratio modulated global gene expression over time in liver and adipose tissue, affecting pathways related to metabolism and inflammation. Analysis of fecal bacterial DNA using the Mouse Intestinal Tract Chip revealed significant changes in the composition of the gut microbiota in relation to host age and dietary fat content, but not the protein/sucrose ratio. Accordingly, dietary fat rather than the protein/sucrose ratio or adiposity is a major driver shaping the gut microbiota, whereas the effect of a high-fat diet on survival is dependent on the protein/sucrose ratio.


Sign in / Sign up

Export Citation Format

Share Document