Molecular analysis of treatment-refractory pityriasis rubra pilaris uncovers an IL-1 signature with therapeutic proof-of-concept of the anti-IL-1 biological anakinra

Author(s):  
Antonios Kolios
2019 ◽  
Vol 5 (3) ◽  
pp. 194
Author(s):  
Kimberly Huerth ◽  
Wen Chen ◽  
Pooja Khera ◽  
Mary Maiberger

2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Andrea R. Durrant ◽  
Uriel Heresco-Levy

D-Serine (DSR) is an endogenous amino acid involved in glia-synapse interactions that has unique neurotransmitter characteristics. DSR acts as obligatory coagonist at the glycine site associated with the N-methyl-D-aspartate subtype of glutamate receptors (NMDAR) and has a cardinal modulatory role in major NMDAR-dependent processes including NMDAR-mediated neurotransmission, neurotoxicity, synaptic plasticity, and cell migration. Since either over- or underfunction of NMDARs may be involved in the pathophysiology of neuropsychiatric disorders; the pharmacological manipulation of DSR signaling represents a major drug development target. A first generation of proof-of-concept animal and clinical studies suggest beneficial DSR effects in treatment-refractory schizophrenia, movement, depression, and anxiety disorders and for the improvement of cognitive performance. A related developing pharmacological strategy is the indirect modification of DSR synaptic levels by use of compounds that alter the function of main enzymes responsible for DSR production and degradation. Accumulating data indicate that, during the next decade, we will witness important advances in the understanding of DSR role that will further contribute to elucidating the causes of neuropsychiatric disorders and will be instrumental in the development of innovative treatments.


Genomics ◽  
2010 ◽  
Vol 95 (1) ◽  
pp. 16-24 ◽  
Author(s):  
Nicholas F. Marko ◽  
Richard A. Prayson ◽  
Gene H. Barnett ◽  
Robert J. Weil

Author(s):  
A. G. Jackson ◽  
M. Rowe

Diffraction intensities from intermetallic compounds are, in the kinematic approximation, proportional to the scattering amplitude from the element doing the scattering. More detailed calculations have shown that site symmetry and occupation by various atom species also affects the intensity in a diffracted beam. [1] Hence, by measuring the intensities of beams, or their ratios, the occupancy can be estimated. Measurement of the intensity values also allows structure calculations to be made to determine the spatial distribution of the potentials doing the scattering. Thermal effects are also present as a background contribution. Inelastic effects such as loss or absorption/excitation complicate the intensity behavior, and dynamical theory is required to estimate the intensity value.The dynamic range of currents in diffracted beams can be 104or 105:1. Hence, detection of such information requires a means for collecting the intensity over a signal-to-noise range beyond that obtainable with a single film plate, which has a S/N of about 103:1. Although such a collection system is not available currently, a simple system consisting of instrumentation on an existing STEM can be used as a proof of concept which has a S/N of about 255:1, limited by the 8 bit pixel attributes used in the electronics. Use of 24 bit pixel attributes would easily allowthe desired noise range to be attained in the processing instrumentation. The S/N of the scintillator used by the photoelectron sensor is about 106 to 1, well beyond the S/N goal. The trade-off that must be made is the time for acquiring the signal, since the pattern can be obtained in seconds using film plates, compared to 10 to 20 minutes for a pattern to be acquired using the digital scan. Parallel acquisition would, of course, speed up this process immensely.


Sign in / Sign up

Export Citation Format

Share Document