scholarly journals CONDITIONS FOR PRIMARY PRODUCTION OF PHYTOPLANKTON IN THE VOSTOK BAY (JAPAN SEA) IN SPRING 2016

2019 ◽  
Vol 198 ◽  
pp. 164-185
Author(s):  
P. P. Tishchenko ◽  
P. Ya. Tishchenko ◽  
O. A. Elovskaya ◽  
V. I. Zvalinsky ◽  
Yu. V. Fedorets

The Vostok Bay was surveyed on March 16–18, 2016 with measuring of water properties profiles by oceanographic sondes Sea-Bird SBE-19plus V2 and Rinko Profiler ASTD-102 with sensors of pressure, temperature, conductivity, turbidity, chlorophyll fluorescence, dissolved oxygen, and photosynthetically active radiation (PAR) and collecting of water samples by SBE-32 carousel sampler with 10 liter bottles for further measuring of nutrients (P, Si and N in forms of nitrate and ammonium) and chlorophyll a concentration and phyto- and zooplankton abundance and species composition. Assimilation number (Pb ) of phytoplankton was determined using the optical sensor of dissolved oxygen mounted on logger Rinko AR01-USB and primary production was calculated from the measured values of Pb , Chl a and PAR. Values of primary production ranged from 200 to 2100 mgC/(m2.day). The highest phytoplankton growth was detected at the depth of 8–10 m in the northern Vostok Bay and 10–16 m in its southern part. The total daily production of phytoplankton within the Bay was estimated as 12.5 tC. Species composition of phytoplankton was formed mainly by diatoms (Bacillariophyta) and dinophytes (Dinophyta). The highest biomass of raw phytoplankton was registered at the sea surface, whereas the highest values of chlorophyll concentration occurred mainly at the bottom of the bay. Species composition of zooplankton was typical for spring season, with domination of copepods presented mainly by neritic species; its biomass was in 12 times lower than the phytoplankton biomass, on average. There was concluded that photosynthetic activity of phytoplankton was limited by nitrate availability, therefore it was intensified by penetration of relatively cold, nitrogen-rich waters from the deep-water sea to the Vostok Bay.

1972 ◽  
Vol 29 (9) ◽  
pp. 1261-1267 ◽  
Author(s):  
Lawrence F. Small ◽  
Herbert Curl Jr. ◽  
Walter A. Glooschenko

An existing equation for the estimation of primary production from chlorophyll and light data was examined, and revisions were made to allow more precise applications of the equation to upwelling areas and other regions with relatively large fluctuations in chlorophyll concentration and production per unit of chlorophyll during the day. The revised equation was developed by estimating production in 2-hr increments through the daylight period, and integrating by parts to arrive at production in terms of gC m−2 day−1. Total daily production in coastal waters was estimated within ± 13% of mean 14C estimates, on the average, while in offshore waters the estimates averaged within ± 21% of mean 14C estimates. Estimates by the revised equation averaged 52% better in coastal waters, and 32% better in offshore waters, than the basic, unrevised equation.


2018 ◽  
Vol 195 ◽  
pp. 184-200
Author(s):  
V. I. Zvalinsky ◽  
P. V. Lobanova ◽  
P. Ya. Tishchenko ◽  
V. B. Lobanov

Satellite data on chlorophyll concentration from ESA (CCI-OC) and Goddard Space Flight Center, NASA and shipboard observations of CTD, P, N, Si, inorganic carbon, DCI, and Chlaat 38 stations in the northeastern Japan Sea (46th cruise of RV Academik M.A. Lavrentyev on July 9–19, 2009) are analyzed. The highest chlorophyll concentrations were found in the subsurface layer (depth 20–40 m) or even deeper in the Polar Front zone, so they were not reflected in the satellite data. The minimal depths of the subsurface maximum were observed northward from the Polar Front where the estimations of chlorophyll concentration in the upper optical layer (Zd= 1/kd) were similar for the shipboard and satellite measurements (on average 0.384 ± 0.160 mg/m3 and 0.406 ± 0.120 mg/m3, respectively). Primary production was calculated using the assimilation number 4.46 mgC/mgChl per hour. Depth of euphotic layer was estimated using the vertical profles of nutrients and Chla. Within this layer, the primary production in the northeastern Japan Sea was evaluated for the shipboard stations as 895–2275 mgС.m–2.day–1, on average 1450 ± 430 mgС.m–2.day–1, and for the satellite data on average 770 ± 190 mgС.m–2.day–1. The estimations based on the shipboard and satellite data were weakly correlated. The shipboard estimations exceed considerably the results obtained by Koblents-Mishke et al. (1956, 1970) and Yamada et al. (2005). Poor accuracy of satellite estimations of primary production is concluded because the deeper part of the euphotic layer with the maximum concentration of chlorophyll is in shadow for satellite sensors.


2003 ◽  
Vol 38 (1) ◽  
pp. 141-152 ◽  
Author(s):  
Danuta Krupa ◽  
Krzysztof Czernaś

Abstract In 1989, Lake Piaseczno, Poland, exhibited a mass appearance of Planktothrix rubescens. During this time the pelagic and littoral areas exhibited significant increases in areal primary production (400 and 41 mg C m-2 h-1, respectively), chlorophyll α (100 and 6.9 mg m-2, respectively) and assimilation number (4 and 5.9 mg C m-2 h-1/mg chlα m-2, respectively). After the water bloom subsided, a reduction of dissolved oxygen concentration (down to 1.5 mg L-1) and high water temperature (10.2°C) in the offshore bottom zone was observed. While from 1991 to 1996, the primary production, chlorophyll α concentration and assimilation number values were decreasing, they were significantly higher than the values reported in 1986, prior to the mass cyanobacteria appearance. An indirect correlation with ion levels indicated that the outbreak of the cyanobacteria was linked with inflow of nutrients from the catchment area. The dramatic changes in the range and variability of the phytoplankton density indicate that the recent eutrophication of the lake has had profound effects on the structure and productivity of the aquatic community.


2021 ◽  
Vol 9 (2) ◽  
pp. 189
Author(s):  
Hyeonji Bae ◽  
Dabin Lee ◽  
Jae Joong Kang ◽  
Jae Hyung Lee ◽  
Naeun Jo ◽  
...  

The cellular macromolecular contents and energy value of phytoplankton as primary food source determine the growth of higher trophic levels, affecting the balance and sustainability of oceanic food webs. Especially, proteins are more directly linked with basic functions of phytoplankton biosynthesis and cell division and transferred through the food chains. In recent years, the East/Japan Sea (EJS) has been changed dramatically in environmental conditions, such as physical and chemical characteristics, as well as biological properties. Therefore, developing an algorithm to estimate the protein concentration of phytoplankton and monitor their spatiotemporal variations on a broad scale would be invaluable. To derive the protein concentration of phytoplankton in EJS, the new regional algorithm was developed by using multiple linear regression analyses based on field-measured data which were obtained from 2012 to 2018 in the southwestern EJS. The major factors for the protein concentration were identified as chlorophyll-a (Chl-a) and sea surface nitrate (SSN) in the southwestern EJS. The coefficient of determination (r2) between field-measured and algorithm-derived protein concentrations was 0.55, which is rather low but reliable. The satellite-derived estimation generally follows the 1:1 line with the field-measured data, with Pearson’s correlation coefficient, which was 0.40 (p-value < 0.01, n = 135). No remarkable trend in the long-term annual protein concentration of phytoplankton was found in the study area during our observation period. However, some seasonal difference was observed in winter protein concentration between the 2003–2005 and 2017–2019 periods. The algorithm is developed for the regional East/Japan Sea (EJS) and could contribute to long-term monitoring for climate-associated ecosystem changes. For a better understanding of spatiotemporal variation in the protein concentration of phytoplankton in the EJS, this algorithm should be further improved with continuous field surveys.


2010 ◽  
Vol 67 (7) ◽  
pp. 1346-1352 ◽  
Author(s):  
Erica A. G. Vidal ◽  
Manuel Haimovici ◽  
Vivian C. S. Hackbart

Abstract Vidal, E. A. G., Haimovici, M., and Hackbart, V. C. S. 2010. Distribution of paralarvae and small juvenile cephalopods in relation to primary production in an upwelling area off southern Brazil. – ICES Journal of Marine Science, 67: 1346–1352. The distribution of paralarvae and small juvenile cephalopods sampled by a rectangular midwater trawl (opening area 8 m2) over the continental shelf off Cape Santa Marta Grande, southern Brazil (28°09′S–29°56′S) during spring 1989 is discussed. An intrusion of Brazil Current Tropical Water (22°C; 36.5) separates warm, less-saline water (22°C; 35.2) from cooler, more-saline water (15°C; 36.4). Prevailing northeasterly winds led to upwelling of South Atlantic Central Water over the shelf, promoting high Chl a concentrations. Three species constituted 99% of the 628 cephalopods collected: Illex argentinus (n = 540; 4–40 mm mantle length, ML), Argonauta nodosa (n = 46; 2–19 mm ML), and Loligo sanpaulensis (n = 42, 2–21 mm ML). Segregation of I. argentinus juveniles of similar size suggests school formation as small as 10 mm ML. The presence of mature males along with fertilized female A. nodosa indicates mating early in life. There was a consistent and direct link between high plankton production and high densities of juvenile cephalopods through a short and ecologically efficient food chain. The relationship between production, pycnocline intensity, and the density of paralarvae and juveniles revealed suitable conditions for survival and growth during the upwelling season.


2018 ◽  
Vol 69 (4) ◽  
pp. 249-255
Author(s):  
Aliu Sali ◽  
Dukagjin Zeka ◽  
Shukri Fetahu ◽  
Imer Rusinovci ◽  
Hans-Peter Kaul

Summary The objective of this work was to investigate the effect of selenium (Se) on the biomass production and the contents of photosynthetically active pigments. The pot experiment included two maize genotypes: hybrid 408BC originating from Croatia and a local maize population from Kosovo. The doses of Se applied were 0, 1.30, 6.57, 13, and 26 mg kg−1. The lowest Se dose (1.30 mg Se kg−1) had a positive effect on shoot and root biomass production as well as on the contents of chlorophyll b (Chl-b), total chlorophyll, and carotenoids (just for the hybrid). Chlorophyll a (Chl-a) was reduced with increasing Se doses, whereas chlorophyll b (Chl-b) and total chlorophyll further increased with medium Se doses. The highest Se dose strongly reduced biomass and the contents of photosynthetically active pigments. Chl-a and carotenoids positively correlated with shoot (for both genotypes) and root (for the hybrid) biomass, whereas no correlation was observed between Chl-b and biomass. Low amounts of Se application are favorable for biomass production and chlorophyll and carotenoids contents, whereas high amounts of Se application negatively affect both.


2017 ◽  
Author(s):  
Sang Heon Lee ◽  
Jang Han Lee ◽  
Howon Lee ◽  
Jae Joong Kang ◽  
Jae Hyung Lee ◽  
...  

Abstract. The Laptev and East Siberian seas are the least biologically studied region in the Arctic Ocean, although they are highly dynamic in terms of active processing of organic matter impacting the transport to the deep Arctic Ocean. Field-measured carbon and nitrogen uptake rates of phytoplankton were conducted in the Laptev and East Siberian seas as part of the NABOS (Nansen and Amundsen Basins Observational System) program. Major inorganic nutrients were mostly depleted at 100–50 % light depths but were not depleted within the euphotic depths in the Laptev and East Siberian seas. The water column-integrated chl-a concentration in this study was significantly higher than that in the western Arctic Ocean (t-test, p > 0.01). Unexpectedly, the daily carbon and nitrogen uptake rates in this study (average ± S.D. = 110.3 ± 88.3 mg C m−2 d−1 and 37.0 ± 25.8 mg N m−2 d−1, respectively) are within previously reported ranges. Surprisingly, the annual primary production (13.2 g C m−2) measured in the field during the vegetative season is approximately one order of magnitude lower than the primary production reported from a satellite–based estimation. Further validation using field-measured observations is necessary for a better projection of the ecosystem in the Laptev and East Siberian seas responding to ongoing climate change.


2021 ◽  
Vol 193 (12) ◽  
Author(s):  
MRS Coffin ◽  
KM Knysh ◽  
SD Roloson ◽  
CC Pater ◽  
E Theriaul ◽  
...  

AbstractIn temperate estuaries of the southern Gulf of St. Lawrence, intermittent seasonal anoxia coupled with phytoplankton blooms is a regular occurrence in watersheds dominated by agricultural land use. To examine the spatial relationship between dissolved oxygen and phytoplankton throughout the estuary to assist in designing monitoring programs, oxygen depth profiles and chlorophyll measurements were taken bi-weekly from May to December in 18 estuaries. In five of those estuaries, dissolved oxygen data loggers were set to measure oxygen at hourly intervals and at multiple locations within the estuary the subsequent year. The primary hypothesis was that dissolved oxygen in the upper estuary (first 10% of estuary area) is predictive of dissolved oxygen mid-estuary (50% of estuary area). The second hypothesis was that hypoxia/superoxia in the estuary is influenced by temperature and tidal flushing. Oxygen depth profiles conducted in the first year of study provided preliminary support that dissolved oxygen in the upper estuary was related to dissolved oxygen throughout the estuary. However, dissolved oxygen from loggers deployed at 10% and 50% of estuary area did not show as strong a correlation as expected (less than half the variance explained). The strength of the correlation declined towards the end of summer. Spatial decoupling of oxygen within the estuary suggested influence of local conditions. Chlorophyll concentration seemed also to be dependent on local conditions as it appeared to be coupled with the presence of sustained anoxia in the upper estuary with blooms typically occurring within 7 to 14 days of anoxia. The practical implication for oxygen monitoring is that one location within the most severely impacted part of the estuary is not sufficient to fully evaluate the severity of eutrophication effects.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Wasir Samad Daming ◽  
Muhammad Anshar Amran ◽  
Amir Hamzah Muhiddin ◽  
Rahmadi Tambaru

Surface chlorophyll-a (Chl-a) distribution have been analyzed with seasonal variation during southeast monsoon in southern part of Makassar Strait and Flores Sea. Satellite data of Landsat-8 is applied to this study to formulate the distribution of chlorophyll concentration during monsoonal wind period. The distribution of chlorophyll concentration was normally peaked condition in August during southeast monsoon. Satellite data showed that a slowdown in the rise of the distribution of chlorophyll in September with a lower concentration than normal is likely due to a weakening the strength of southeast trade winds during June – July – August 2016. Further analysis shows that the southern part of the Makassar strait is likely occurrence of upwelling characterized by increase in surface chlorophyll concentrations were identified as the potential area of fishing ground.


Sign in / Sign up

Export Citation Format

Share Document