scholarly journals Sporopollenin-inspired design and synthesis of robust materials

Author(s):  
Christopher Glinkerman ◽  
Shaoting Lin ◽  
Jiahua Ni ◽  
Fu-Shuang Li ◽  
Xuanhe Zhao ◽  
...  

Sporopollenin is a mechanically robust and chemically inert biopolymer that constitutes the outer protective exine layer of plant spores and pollen grains. Recent investigation of the molecular structure of pine sporopollenin revealed unique monomeric units and inter-unit linkages distinct from other previously known biopolymers, which could be harnessed for new material design. Here, we report the bioinspired synthesis of a series of sporopollenin analogues. This exercise confirms large portions of the previously proposed pine sporopollenin structural model, while the measured chemical, thermal, and mechanical properties of the synthetic sporopollenins indicate favorable attributes of a new kind of robust material. This study explores a new design framework of robust materials inspired by natural sporopollenins, and provides insights and reagents for future elucidation and engineering of sporopollenin biosynthesis in plants.

2018 ◽  
Author(s):  
Fu-Shuang Li ◽  
Pyae Phyo ◽  
Joseph Jacobowitz ◽  
Mei Hong ◽  
Jing-Ke Weng

Sporopollenin is a ubiquitous and extremely chemically inert biopolymer that constitutes the outer wall of all land-plant spores and pollen grains. Sporopollenin protects the vulnerable plant gametes against a wide range of environmental assaults, and is considered as a prerequisite for the migration of early plants onto land. Despite its importance, the chemical structure of plant sporopollenin has remained elusive. Using a newly developed thioacidolysis degradative method together with state-of-the-art solid-state NMR techniques, we determined the detailed molecular structure of pine sporopollenin. We show that pine sporopollenin is primarily composed of aliphatic-polyketide-derived polyvinyl alcohol units and 7-O-p-coumaroylated C16 aliphatic units, crosslinked through a distinctive m-dioxane moiety featuring an acetal. Naringenin was also identified as a minor component of pine sporopollenin. This discovery answers the long-standing question about the chemical makeup of plant sporopollenin, laying the foundation for future investigations of sporopollenin biosynthesis and for design of new biomimetic polymers with desirable inert properties.


2017 ◽  
Vol 742 ◽  
pp. 395-400 ◽  
Author(s):  
Florian Staab ◽  
Frank Balle ◽  
Johannes Born

Multi-material-design offers high potential for weight saving and optimization of engineering structures but inherits challenges as well, especially robust joining methods and long-term properties of hybrid structures. The application of joining techniques like ultrasonic welding allows a very efficient design of multi-material-components to enable further use of material specific advantages and are superior concerning mechanical properties.The Institute of Materials Science and Engineering of the University of Kaiserslautern (WKK) has a long-time experience on ultrasonic welding of dissimilar materials, for example different kinds of CFRP, light metals, steels or even glasses and ceramics. The mechanical properties are mostly optimized by using ideal process parameters, determined through statistical test planning methods.This gained knowledge is now to be transferred to application in aviation industry in cooperation with CTC GmbH and Airbus Operations GmbH. Therefore aircraft-related materials are joined by ultrasonic welding. The applied process parameters are recorded and analyzed in detail to be interlinked with the resulting mechanical properties of the hybrid joints. Aircraft derived multi-material demonstrators will be designed, manufactured and characterized with respect to their monotonic and fatigue properties as well as their resistance to aging.


2021 ◽  
Vol 12 (16) ◽  
pp. 2379-2388
Author(s):  
Jules Stouten ◽  
Aleksandra A. Wróblewska ◽  
Glenn Grit ◽  
Jurrie Noordijk ◽  
Bert Gebben ◽  
...  

A new biobased alternative for terephthalic acid (TPA) in (semi-)aromatic polyamides is proposed, namely 4-carboxybenzene propionic acid (4CBPA).


2021 ◽  
pp. 50533
Author(s):  
Yasmine N. Baghdadi ◽  
Lucia Youssef ◽  
Kamal Bouhadir ◽  
Mohammad Harb ◽  
Samir Mustapha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document