Conjugate acene fused buckybowls: evaluating their suitability for p-type, ambipolar and n-type air stable organic semiconductors

2013 ◽  
Vol 15 (14) ◽  
pp. 5039 ◽  
Author(s):  
Uppula Purushotham ◽  
G. Narahari Sastry

2021 ◽  
Author(s):  
Suman Yadav ◽  
Shivani Sharma ◽  
Satinder K Sharma ◽  
Chullikkattil P. Pradeep

Solution-processable organic semiconductors capable of functioning at low operating voltages (~5 V) are in demand for organic field-effect transistor (OFET) applications. Exploration of new classes of compounds as organic thin-film...





2019 ◽  
Author(s):  
◽  
Alec Pickett

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Organic semiconductors have been gaining attention both in research and commercial development for electronic devices due to their low manufacturing and processing costs. Copolymers based on diketopyrrolopyrrole (DPP) cores have attracted a lot of attention due to their high p-type as well as n-type carrier mobilities in organic field-effect transistors (FETs) and high power conversion efficiencies in solar cell structures. Hybrid organic-inorganic photodiode interfaces have also gained significant interest due to the realization of intrinsic p-n junctions as well as their unique physical properties such as mechanical flexibility and high photosensitivity. ZnO is an intrinsic n-type semiconductor which is non-toxic and sol-gel processable, creating avenues for film patterning and fully solution processed devices. In this work, we report the structural and charge transport properties of n-dialkyl side-chain substituted thiophene DPP end-capped with a phenyl group (Ph-TDPP-Ph) monomer in FETs which were fabricated by vacuum deposition and solvent casting. From grazing incidence X-ray diffraction (GIXRD), Ph-TDPP-Ph reveals polymorphic structure with [pi]-conjugated stacking direction oriented in-plane. The unit cell comprises either one monomer for one phase (TR1), or two monomers for the second phase (TR2). The TR2 phase thus signals a shift from a coplanar to herringbone orientation of the molecules. The device performance is sensitive to the ratio of the two triclinic phases found in the film. Some of the best FET performances with p-type carrier mobilities of 0.1 cm2/Vs and on/off ratio of 10[superscript 6] are for films that comprise mainly the TR1 phase.



2012 ◽  
Vol 3 (8) ◽  
pp. 2530 ◽  
Author(s):  
Luxi Tan ◽  
Yunlong Guo ◽  
Yang Yang ◽  
Guanxin Zhang ◽  
Deqing Zhang ◽  
...  


MRS Advances ◽  
2015 ◽  
Vol 1 (7) ◽  
pp. 453-458 ◽  
Author(s):  
Patrick J. Dwyer ◽  
Stephen P. Kelty

ABSTRACTFor efficient charge separation and charge transport in optoelectronic materials, small internal reorganization energies are desired. While many p-type organic semiconductors have been reported with low internal reorganization energies, few n-type materials with low reorganization energy are known. Metal phthalocyanines have long received extensive research attention in the field of organic device electronics due to their highly tunable electronic properties through modification of the molecular periphery. In this study, density functional theory (DFT) calculations are performed on a series of zinc-phthalocyanines (ZnPc) with various degrees of peripheral per-fluoroalkyl (-C3F7) modification. Introduction of the highly electron withdrawing groups on the periphery leads to a lowering in the energy of the molecular frontier orbitals as well as an increase in the electron affinity. Additionally, all molecules studies are found to be most stable in their anionic form, demonstrating their potential as n-type materials. However, the calculated internal reorganization energy slightly increases as a function of peripheral modification. By varying the degree of modification we develop a strategy for obtaining an optimal balance between low reorganization energy and high electron affinity for the development of novel n-type optoelectronic materials.



2003 ◽  
Vol 769 ◽  
Author(s):  
Antonio Facchetti ◽  
Myung-Han Yoon ◽  
Howard E. Katz ◽  
Melissa Mushrush ◽  
Tobin J. Marks

AbstractOrganic semiconductors exhibiting complementary-type carrier mobility are the key components for the development of the field of “plastic electronics”. We present here a novel series of αω- and isomerically pure β,β'-diperfluorohexyl-substituted thiophene and study the impact of fluoroalkyl substitution and conjugation length vìs-à-vìs the corresponding fluorinefree analogues. Trends between the fluorinated and fluorine-free families in molecular packing, HOMO-LUMO gap, and π-π interactions are found to be strikingly similar. TFT measurements indicate that all members of the fluorinated series are n-type semiconductors



2003 ◽  
Vol 771 ◽  
Author(s):  
Antonio Facchetti ◽  
Myung-Han Yoon ◽  
Howard E. Katz ◽  
Melissa Mushrush ◽  
Tobin J. Marks

AbstractOrganic semiconductors exhibiting complementary-type carrier mobility are the key components for the development of the field of “gplastic electronics” We present here a novel series of α,ω- and isomerically pure ββ'-diperfluorohexyl-substituted thiophene and study the impact of fluoroalkyl substitution and conjugation length vis-a-vis the corresponding fluorinefree analogues. Trends between the fluorinated and fluorine-free families in molecular packing, HOMO-LUMO gap, and π-π interactions are found to be strikingly similar. TFT measurements indicate that all members of the fluorinated series are n-type semiconductors



2020 ◽  
Author(s):  
Chuanding Dong ◽  
Stefan Schumacher

<p>The mechanistic study of molecular doping of organic semiconductors (OSC) requires</p><p>an improved understanding of the role and formation of integer charge transfer complexes</p><p>(ICTC) on a microscopic level. In the present work we go one crucial step beyond</p><p>the simplest scenario of an isolated bi-molecular ICTC and study ICTCs formed of</p><p>up to two (poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b,3,4-b”]dithiophene)-alt-4,7-(2,1,3-</p><p>benzothiadiazole)](PCPDT-BT) oligomers and up to two CN6-CP molecules. We find that depending</p><p>on geometric arrangement, complexes containing two conjugated oligomers and two</p><p>dopant molecules can show p-type doping with double integer charge transfer, resulting in either</p><p>two singly doped oligomers or one doubly doped oligomer. Interestingly, compared to an individual</p><p>oligomer-dopant complex, the resulting in-gap states on the doped oligomers are significantly</p><p>lowered in energy. Indicating that, already in the relatively small systems studied here, Coulomb</p><p>binding of the doping-induced positive charge to the counter-ion is reduced which is an elemental</p><p>step towards generating mobile charge carriers through molecular doping.</p>



2014 ◽  
Vol 70 (a1) ◽  
pp. C1552-C1552
Author(s):  
Venkatesha Hathwar ◽  
Mads Jørgensen ◽  
Mattia Sist ◽  
Jacob Overgaard ◽  
Bo Iversen ◽  
...  

In recent years, semiconducting organic materials have attracted a considerable amount of interest to develop all-organic or hybrid organic-inorganic electronic devices such as organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs), or photovoltaic cells. Rubrene (5,6,11,12-tetraphenyltetracene, RUB) is one of the most explored compound in this area as it has nearly 100% fluorescence quantum efficiency in solution. Additionally, the OFET fabricated by vacuum-deposited using orthorhombic rubrene single crystals show p-type characteristics with high mobility up to 20cm2/Vs (Podzorov et al., 2004). The large charge-carrier mobilities measured have been attributed to the packing motif (Fig a) which provides enough spatial overlap of the π-conjugated tetracene backbone. In the same time, RUB undergoes an oxidation in the presence of light to form rubrene endoperoxide (RUB-OX) (Fumagalli et al., 2011). RUB-OX molecules show electronic and structural properties strikingly different from those of RUB, mainly due to the disruption in the conjugate stacking of tetracene moieties. The significant semiconducting property of RUB is not clear yet. In this context, high resolution single crystal X-ray data of RUB (Fig b) and RUB-OX have been collected at 100K. Owing to the presence of weak aromatic stacking and quadrupolar interactions, the neutron single crystal data is also collected at 100K. The C-H bond distances and scaled anisotropic displacement parameters (ADP) of hydrogens from the neutron experiment are used in the multipolar refinements of electron density. The chemical bonding features (Fig c), the topology of electron density and strength of weak interaction are calculated by the Atoms in Molecules (AIM) theory (Bader, 1990). It is further supported by the source function description and mapping of non-covalent interactions based on the electron density. The detailed comparison of two organic semiconductors, RUB and RUB-OX will be discussed.



2020 ◽  
Author(s):  
Chuanding Dong ◽  
Stefan Schumacher

<p>The mechanistic study of molecular doping of organic semiconductors (OSC) requires</p><p>an improved understanding of the role and formation of integer charge transfer complexes</p><p>(ICTC) on a microscopic level. In the present work we go one crucial step beyond</p><p>the simplest scenario of an isolated bi-molecular ICTC and study ICTCs formed of</p><p>up to two (poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b,3,4-b”]dithiophene)-alt-4,7-(2,1,3-</p><p>benzothiadiazole)](PCPDT-BT) oligomers and up to two CN6-CP molecules. We find that depending</p><p>on geometric arrangement, complexes containing two conjugated oligomers and two</p><p>dopant molecules can show p-type doping with double integer charge transfer, resulting in either</p><p>two singly doped oligomers or one doubly doped oligomer. Interestingly, compared to an individual</p><p>oligomer-dopant complex, the resulting in-gap states on the doped oligomers are significantly</p><p>lowered in energy. Indicating that, already in the relatively small systems studied here, Coulomb</p><p>binding of the doping-induced positive charge to the counter-ion is reduced which is an elemental</p><p>step towards generating mobile charge carriers through molecular doping.</p>



Sign in / Sign up

Export Citation Format

Share Document