scholarly journals Self Assembly of Arsenic Nanoparticles into Magnetic Nanotubules and Their SERS Activity

Author(s):  
Laden Sherpa ◽  
Ajay Tripathi ◽  
Manish K. Singh ◽  
Rajiv Mandal ◽  
Archana Tiwari

<p>Nano-Arsenic are synthesized using Bergenia cilliata roots extracts in water from Arsenic trioxide. The synthesized As nanoparticles, with an average diameter of 13(1) nm, self-assemble into nanotubles with average Feret diameter 530(20) nm. These As nanotubules/nanoparticles have direct band-gap of 2.74 eV and incorporates multiple defect related states. The presence of weak ferromagnetism in these nanotubules/nanoparticles are attributed to the dipolar inertactions amongst the charges on the defect sites. Owing to van derWaals interactions between nanotubules and smaller nanoparticles, nanotubules presents surface roughness which is utilized as surface enhanced raman spectroscopy substrate for probing methylene blue dye with an enhancement factor > 10<sup>3</sup>.</p>

2020 ◽  
Author(s):  
Laden Sherpa ◽  
Ajay Tripathi ◽  
Manish K. Singh ◽  
Rajiv Mandal ◽  
Archana Tiwari

<p>Nano-Arsenic are synthesized using Bergenia cilliata roots extracts in water from Arsenic trioxide. The synthesized As nanoparticles, with an average diameter of 13(1) nm, self-assemble into nanotubles with average Feret diameter 530(20) nm. These As nanotubules/nanoparticles have direct band-gap of 2.74 eV and incorporates multiple defect related states. The presence of weak ferromagnetism in these nanotubules/nanoparticles are attributed to the dipolar inertactions amongst the charges on the defect sites. Owing to van derWaals interactions between nanotubules and smaller nanoparticles, nanotubules presents surface roughness which is utilized as surface enhanced raman spectroscopy substrate for probing methylene blue dye with an enhancement factor > 10<sup>3</sup>.</p>


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1288
Author(s):  
Thi Thuy Nguyen ◽  
Fayna Mammeri ◽  
Souad Ammar ◽  
Thi Bich Ngoc Nguyen ◽  
Trong Nghia Nguyen ◽  
...  

The formation of silver nanopetal-Fe3O4 poly-nanocrystals assemblies and the use of the resulting hetero-nanostructures as active substrates for Surface Enhanced Raman Spectroscopy (SERS) application are here reported. In practice, about 180 nm sized polyol-made Fe3O4 spheres, constituted by 10 nm sized crystals, were functionalized by (3-aminopropyl)triethoxysilane (APTES) to become positively charged, which can then electrostatically interact with negatively charged silver seeds. Silver petals were formed by seed-mediated growth in presence of Ag+ cations and self-assembly, using L-ascorbic acid (L-AA) and polyvinyl pyrrolidone (PVP) as mid-reducing and stabilizing agents, respectively. The resulting plasmonic structure provides a rough surface with plenty of hot spots able to locally enhance significantly any applied electrical field. Additionally, they exhibited a high enough saturation magnetization with Ms = 9.7 emu g−1 to be reversibly collected by an external magnetic field, which shortened the detection time. The plasmonic property makes the engineered Fe3O4-Ag architectures particularly valuable for magnetically assisted ultra-sensitive SERS sensing. This was unambiguously established through the successful detection, in water, of traces, (down to 10−10 M) of Rhodamine 6G (R6G), at room temperature.


2016 ◽  
Vol 40 (9) ◽  
pp. 7286-7289 ◽  
Author(s):  
Yuanchao Zhang ◽  
Jingquan Liu ◽  
Da Li ◽  
Fuhua Yan ◽  
Xin Wang ◽  
...  

Self-assembly of ultrathin gold nanowires and single-walled carbon nanotubes as highly sensitive substrates for surface enhanced Raman spectroscopy.


Author(s):  
haidong Zhao ◽  
Katsuhiro Isozaki ◽  
Tomoya Taguchi ◽  
Shengchun Yang ◽  
Kazushi Miki

Laying-down gold nanorods (GNRs) of a monolayer immobilized on a solid substrate was realized with the hybrid method, a combination of three elemental technologies: self-assembly, electrophoresis, and solvent evaporation. The...


e-Polymers ◽  
2009 ◽  
Vol 9 (1) ◽  
Author(s):  
Yansheng Zhao ◽  
Xingji Ma ◽  
Yongmei Liu ◽  
Guangwei Yuan ◽  
Meijuan Guo ◽  
...  

AbstractIn acidic media, poly(styrene-methacrylic acid)/MCM-41 [P(St- MAA)/MCM-41] core/shell microspheres were synthesized using monodisperse P(St-MAA) particles contained in soap-free emulsion and cetyltrimethylammonium bromide as co-templates by adsorption self-assembly method. The effects of P(St- MAA) composition on shell structure of the core/shell microspheres were investigated. The morphology and composition of P(St-MAA)/MCM-41 microspheres were characterized by TEM, XRD and FTIR. The results show that the ordering degree of MCM-41 shells increased as the molar ratio of MAA to St increased. When n(MAA)/n(St) is 0.2, the average diameter and the shell thickness of nanocomposite microspheres are about 170 nm and 20 nm, respectively.


Nano Letters ◽  
2010 ◽  
Vol 10 (12) ◽  
pp. 5006-5013 ◽  
Author(s):  
Jixiang Fang ◽  
Shuya Du ◽  
Sergei Lebedkin ◽  
Zhiyuan Li ◽  
Robert Kruk ◽  
...  

The Analyst ◽  
2018 ◽  
Vol 143 (10) ◽  
pp. 2363-2368 ◽  
Author(s):  
Yiping Wu ◽  
Wenfang Yu ◽  
Benhong Yang ◽  
Pan Li

CTAB-functionalized Au NP film as SERS active substrate prepared by the evaporation-driven self-assembly strategy demonstrated high sensitivity and reproducibility for the detection of different food additives.


2020 ◽  
Author(s):  
Sihai Luo ◽  
Andrea Mancini ◽  
Rodrigo Berté ◽  
Bård H. Hoff ◽  
Stefan A. Maier ◽  
...  

Metallic nanogaps are fundamental components of nanoscale photonic and electronic devices. However, the lack of reproducible high-yield fabrication methods with nanometric control over the gap-size has hindered practical applications. Here, we report a patterning technique based on molecular self-assembly and physical peeling that allows the gap-width to be tuned over the range 3 – 30 nm and enables the fabrication of massively parallel nanogap arrays containing hundreds of millions of ring-shaped nanogaps (RSNs). The method is used here to prepare molecular diodes across sub-3-nm metallic nanogaps and to fabricate visible-light-active plasmonic substrates based on large-area, gold-based RSN arrays. The substrates are applicable to a broad range of optical applications, and are used here as substrates for surface-enhanced Raman spectroscopy (SERS), providing high enhancement factors of up to 3e8 relative to similar, gap-free thin gold films.


2020 ◽  
Author(s):  
Won-Geun Kim ◽  
Jongmin Lee ◽  
Vasanthan Devaraj ◽  
Minjun Kim ◽  
Hyuk Jeong ◽  
...  

Abstract Plasmonic nanoparticle clusters promise to support various, unique artificial electromagnetisms at optical frequencies, realizing new concept devices for diverse nanophotonic applications. However, the technological challenges associated with the fabrication of plasmonic clusters with programmed geometry and composition remain unresolved. Here, we present a freeform fabrication of hierarchical plasmonic clusters (HPCs) based on omnidirectional guiding of evaporative self-assembly of gold nanoparticles (AuNPs) with the aid of 3D printing. Our method offers a facile, universal route to shape the multiscale features of HPCs in three-dimensions, leading to versatile manipulation of both far-field and near-field characteristics. Various functional nanomaterials can be effectively coupled to plasmonic modes of the HPCs by simply mixing with AuNP ink. We demonstrate in particular an ultracompact surface-enhanced Raman spectroscopy (SERS) platform to detect M13 viruses and their mutations from femtolitre volume, sub-100pM analytes. This SERS microplatform could pave the way towards simple, innovative detection methods of diverse pathogens, which is in high demand for handling pandemic situations. We expect our method to freely design and realize nanophotonic structures beyond the restrictions of traditional fabrication processes. Plasmonic nanoparticle clusters have attracted great attention due to the unique capability to manipulate electromagnetic fields at the sub-wavelength scale1–5. Ensembles of metallic nanoparticles generate various electromagnetisms at optical frequencies such as artificial magnetism6–10 and Fano-like interference11–13 and a strong field localization in the structure14–16. These unique properties are geometry-dependent and lead to a broad range of applications in sensing16,17, surface-enhanced spectroscopies18–22, nonlinear integrated photonics23,24, and light harvesting25,26. Traditionally, plasmonic clusters with tailored size and geometry are fabricated on substrates by top-down processes such as electron-beam lithography4,5 or focused-ion beam milling27,28. These approaches suffer from low throughput and are generally limited to in-plane fabrication. Alternatively, the self-assembly of colloids has been proposed as a versatile, high-throughput, and cost-effective route. A number of clever methods based on chemical linking (e.g., DNA origami)29–30 and/or convective assembly on lithographically structured templates25,26,31 have been devised to construct 2D or 3D plasmonic clusters. The shape formation, however, is mostly constrained by the thermodynamic impetus and/or template geometry. A significant challenge would be overcome these restrictions and expand structural design freedom in the fabrication of plasmonic cluster architectures with symmetry-breaking geometries. In this work, we develop a freeform, programmable 3D assembly of of hierarchical plasmonic clusters (HPCs). By exploiting micronozzle 3D printing, we demonstrate highly localized, omnidirectional meniscus-guided assembly of metallic nanoparticles, constructing a freestanding HPC with a tailored geometry that can control the far-field character. Our approach also allows versatile manipulation and exploitation of the near-field interaction in the HPC by a facile heterogeneous nanoparticle mixing. We demonstrate that 3D-printed HPCs can be utilized as an ultracompact surface-enhanced Raman spectroscopy (SERS) platform to detect M13 viruses and their mutations from femtolitre volume, sub-100pM analytes.


2020 ◽  
Vol 26 (6) ◽  
pp. 1243-1248 ◽  
Author(s):  
Junfang Zhang ◽  
Soeun Gim ◽  
Grigori Paris ◽  
Pietro Dallabernardina ◽  
Clemens N. Z. Schmitt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document