scholarly journals Synthesis, Characterization and Antiparasitic Activity of Organometallic Derivatives of the Anthelmintic Drug Albendazole

Author(s):  
Yan Lin ◽  
Yih Ching Ong ◽  
Sarah Keller ◽  
Johannes Karges ◽  
Rafika Bouchene ◽  
...  

Helminthiases, a group of neglected tropical diseases, affect more than one billion people mainly in tropical and subtropical regions. Albendazole (ABZ) is a broad‐spectrum anthelmintic recommended by the World Health Organisation (WHO). However, drug resistance is emerging due to its widespread use. In order to tackle this problem, taking into account the spectacular results obtained with the organometallic derivatization of the antimalarial drug chloroquine, we have prepared, in this study, a series of new ferrocenyl and ruthenocenyl derivatives of the organic drug ABZ and assessed their activity against different helminths but also protozoans, namely Trichuris muris adult, Heligmosomoides polygygrus adult, Schistosoma mansoni adult, Giardia lamblia, Haemonchus contortus xL3s and Toxoplasma gondii to determine the full potential of our new compounds. Worthy of note, the ferrocene‐containing ABZ analogue 2d exhibited over 70% activity against T. muris adult in vitro and no toxicity to mammalian cells up to 100 µM. Against T. gondii, the ferrocene‐containing ABZ analogues 1a and 2d showed better in vitro activity than ABZ and low toxicity to the host cells. However, the activity of the analogous ruthenocenyl compound 2b against S. mansoni and T. gondii in vitro could rather be attributed to its toxicity towards the host cells rather than a specific antiparasitic activity. These results demonstrate that the choice of the organometallic moieties attached to the organic drug is playing a very important role. Two of our organometallic compounds, namely 1b and 2d, were tested in T. muris infected mice. At a 400 mg/kg dose, the compounds showed moderate worm burden reductions and low worm expulsion rates. Overall, this work, which is one of the first studies reporting the potential of organometallic compounds on a very broad range of parasitic helminths and protozoan, is a clear confirmation of the potential of organometallic complexes against parasites of medical and veterinary importance.<br>

2020 ◽  
Author(s):  
Yan Lin ◽  
Yih Ching Ong ◽  
Sarah Keller ◽  
Johannes Karges ◽  
Rafika Bouchene ◽  
...  

Helminthiases, a group of neglected tropical diseases, affect more than one billion people mainly in tropical and subtropical regions. Albendazole (ABZ) is a broad‐spectrum anthelmintic recommended by the World Health Organisation (WHO). However, drug resistance is emerging due to its widespread use. In order to tackle this problem, taking into account the spectacular results obtained with the organometallic derivatization of the antimalarial drug chloroquine, we have prepared, in this study, a series of new ferrocenyl and ruthenocenyl derivatives of the organic drug ABZ and assessed their activity against different helminths but also protozoans, namely Trichuris muris adult, Heligmosomoides polygygrus adult, Schistosoma mansoni adult, Giardia lamblia, Haemonchus contortus xL3s and Toxoplasma gondii to determine the full potential of our new compounds. Worthy of note, the ferrocene‐containing ABZ analogue 2d exhibited over 70% activity against T. muris adult in vitro and no toxicity to mammalian cells up to 100 µM. Against T. gondii, the ferrocene‐containing ABZ analogues 1a and 2d showed better in vitro activity than ABZ and low toxicity to the host cells. However, the activity of the analogous ruthenocenyl compound 2b against S. mansoni and T. gondii in vitro could rather be attributed to its toxicity towards the host cells rather than a specific antiparasitic activity. These results demonstrate that the choice of the organometallic moieties attached to the organic drug is playing a very important role. Two of our organometallic compounds, namely 1b and 2d, were tested in T. muris infected mice. At a 400 mg/kg dose, the compounds showed moderate worm burden reductions and low worm expulsion rates. Overall, this work, which is one of the first studies reporting the potential of organometallic compounds on a very broad range of parasitic helminths and protozoan, is a clear confirmation of the potential of organometallic complexes against parasites of medical and veterinary importance.<br>


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4510
Author(s):  
Paola Terrazas ◽  
Sophie Manner ◽  
Olov Sterner ◽  
Marcelo Dávila ◽  
Alberto Giménez ◽  
...  

Neglected tropical diseases affect most of the underprivileged populations in tropical countries. Among these are chagas and leishmaniasis, present mainly in South and Central America, Africa and East Asia. Current treatments are long and have severe adverse effects, therefore there is a strong need to develop alternatives. In this study, we base our research on the plant metabolite pulchrol, a natural benzochromene which has been shown to possess antiparasitic activity against Trypanosoma and Leishmania species. In a recent study, we investigated how changes in the benzyl alcohol functionality affected the antiparasitic activity, but the importance of B- and C-ring substituents is not understood. Fifteen derivatives of pulchrol with different substituents in positions 1, 2, 3, and 6 while leaving the A-ring intact, were therefore prepared by total synthesis, assayed, and compared with pulchrol and positive controls. The generated series and parental molecule were tested in vitro for antiparasitic activity against Trypanosoma cruzi, Leishmania braziliensis, and L. amazonensis, and cytotoxicity using RAW cells. Substantial differences in the activity of the compounds synthesized were observed, of which some were more potent towards Trypanosoma cruzi than the positive control benznidazole. A general tendency is that alkyl substituents improve the potency, especially when positioned on C-2.


2020 ◽  
Vol 21 ◽  
Author(s):  
Boniface Pone ◽  
Ferreira Igne Elizabeth

: Neglected tropical diseases (NTDs) are responsible for over 500,000 deaths annually and are characterized by multiple disabilities. Leishmaniasis and Chagas disease are among the most severe NTDs, and are caused by the Leishmania sp, and Trypanosoma cruzi, respectively. Glucantime, pentamidine and miltefosine are commonly used to treat leishmaniasis, whereas nifurtimox, benznidazole are current treatments for Chagas disease. However, these treatments are associated with drug resistance, and severe side effects. Hence, the development of synthetic products, especially those containing N02, F, or Cl, which chemical groups are known to improve the biological activity. The present work summarizes the information on the antileishmanial and antitrypanosomal activity of nitro-, chloro-, and fluoro-synthetic derivatives. Scientific publications referring to halogenated derivatives in relation to antileishmanial and antitrypanosomal activities were hand searched in databases such as SciFinder, Wiley, Science Direct, PubMed, ACS, Springer, Scielo, and so on. According to the literature information, more than 90 compounds were predicted as lead molecules with reference to their IC50/EC50 values in in vitro studies. It is worth to mention that only active compounds with known cytotoxic effects against mammalian cells were considered in the present study. The observed activity was attributed to the presence of nitro-, fluoro- and chloro-groups in the compound backbone. All in all, nitro and h0alogenated derivatives are active antileishmanial and antitrypanosomal compounds and can serve as baseline for the development of new drugs against leishmaniasis and Chagas disease. However, efforts on in vitro and in vivo toxicity studies of the active synthetic compounds is still needed. Pharmacokinetic studies, and the mechanism of action of the promising compounds need to be explored. The use of new catalysts and chemical transformation can afford unexplored halogenated compounds with improved antileishmanial and antitrypanosomal activity.


2020 ◽  
Vol 16 ◽  
Author(s):  
Lucas da Silva Santos ◽  
Matheus Fillipe Langanke de Carvalho ◽  
Ana Claudia de Souza Pinto ◽  
Amanda Luisa da Fonseca ◽  
Julio César Dias Lopes ◽  
...  

Background: Malaria greatly affects the world health, having caused more than 228 million cases only in 2018. The emergence of drug resistance is one of the main problems in its treatment, demonstrating the urge for the development of new antimalarial drugs. Objective: Synthesis and in vitro antiplasmodial evaluation of triazole compounds derived from isocoumarins and a 3,4- dihydroisocoumarin. Method: The compounds were synthesized in 4 to 6-step reactions with the formation of the triazole ring via the Copper(I)-catalyzed 1,3-dipolar cycloaddition between isocoumarin or 3,4-dihydroisocoumarin azides and terminal alkynes. This key reaction provided compounds with an unprecedented connection of isocoumarin or 3,4-dihydroisocoumarin and the 1,2,3-triazole ring. The products were tested for their antiplasmodial activity against a Plasmodium falciparum chloroquine resistant and sensitive strains (W2 and 3D7, respectively). Results: Thirty-one substances were efficiently obtained by the proposed routes with an overall yield of 25-53%. The active substances in the antiplasmodial test displayed IC50 values ranging from 0.68-2.89 μM and 0.85-2.07 μM against W2 and 3D7 strains, respectively.


2020 ◽  
Vol 14 (2) ◽  
pp. 134-144 ◽  
Author(s):  
Matthew P. Ameh ◽  
Mamman Mohammed ◽  
Yusuf P. Ofemile ◽  
Magaji G. Mohammed ◽  
Ada Gabriel ◽  
...  

Background: The World Health Organization included snakebite envenomation among Neglected Tropical Diseases in 2017. The importance of natural products from plants is enormous, given that most prescribed drugs originate from plants. Among this is Mucuna pruriens and Mimosa pudica, with many registered patents asserting their health benefits. Objective: This study investigated the in vitro neutralizing effects of Mucuna pruriens seed and Mimosa pudica root extracts on venoms of Naja nigricollis and Bitis arietans. Methods: In mice, the LD50 and phytochemical analysis of M. pruriens and M. pudica plant extracts were carried out prior to the evaluation of their haemolytic and fibrinolytic effect. Their effects on the activities of phospholipase A2 (PLA2) were also assessed. Results: At a concentration of 50 mg/ml, both plant extracts were found to neutralize the fibrinolytic activity of N. nigricollis, but 400 mg/ml was required to neutralize the fibrinolytic activity of B. arietans. In haemolytic studies, 50 mg/ml concentration of M. pruriens extract suppressed haemolysis caused by N. nigricollis venom by 70% but at the same concentration, M. pudica extract reduced haemolysis by 49.4%. M. pruriens, at 50 mg/ml concentration, only inhibited phospholipase A2 activity by 7.7% but higher concentrations up to 400mg/ml had no effect against the venom of N. nigricollis; at 200 mg/ml. M. pudica extract inhibited PLA2 activity by 23%. Conclusion: The results suggest that M. pruriens and M. pudica may be considered as promising antivenom agents for people living in a snake-bite prone environment.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4204
Author(s):  
George E. Magoulas ◽  
Pantelis Afroudakis ◽  
Kalliopi Georgikopoulou ◽  
Marina Roussaki ◽  
Chiara Borsari ◽  
...  

A library of seventeen novel ether phospholipid analogues, containing 5-membered heterocyclic rings (1,2,3-triazolyl, isoxazolyl, 1,3,4-oxadiazolyl and 1,2,4-oxadiazolyl) in the lipid portion were designed and synthesized aiming to identify optimised miltefosine analogues. The compounds were evaluated for their in vitro antiparasitic activity against Leishmania infantum and Leishmania donovani intracellular amastigotes, against Trypanosoma brucei brucei and against different developmental stages of Trypanosoma cruzi. The nature of the substituents of the heterocyclic ring (tail) and the oligomethylene spacer between the head group and the heterocyclic ring was found to affect the activity and toxicity of these compounds leading to a significantly improved understanding of their structure–activity relationships. The early ADMET profile of the new derivatives did not reveal major liabilities for the potent compounds. The 1,2,3-triazole derivative 27 substituted by a decyl tail, an undecyl spacer and a choline head group exhibited broad spectrum antiparasitic activity. It possessed low micromolar activity against the intracellular amastigotes of two L. infantum strains and T. cruzi Y strain epimastigotes, intracellular amastigotes and trypomastigotes, while its cytotoxicity concentration (CC50) against THP-1 macrophages ranged between 50 and 100 μM. Altogether, our work paves the way for the development of improved ether phospholipid derivatives to control neglected tropical diseases.


2011 ◽  
Vol 79 (10) ◽  
pp. 4081-4087 ◽  
Author(s):  
Craig Weinkauf ◽  
Ryan Salvador ◽  
Mercio PereiraPerrin

ABSTRACTTrypanosoma cruzi, the agent of Chagas' disease, infects a variety of mammalian cells in a process that includes multiple cycles of intracellular division and differentiation starting with host receptor recognition by a parasite ligand(s). Earlier work in our laboratory showed that the neurotrophin-3 (NT-3) receptor TrkC is activated byT. cruzisurfacetrans-sialidase, also known as parasite-derived neurotrophic factor (PDNF). However, it has remained unclear whether TrkC is used byT. cruzito enter host cells. Here, we show that a neuronal cell line (PC12-NNR5) relatively resistant toT. cruzibecame highly susceptible to infection when overexpressing human TrkC but not human TrkB. Furthermore,trkCtransfection conferred an ∼3.0-fold intracellular growth advantage. Sialylation-deficient Chinese hamster ovarian (CHO) epithelial cell lines Lec1 and Lec2 also became much more permissive toT. cruziafter transfection with thetrkCgene. Additionally, NT-3 specifically blockedT. cruziinfection of the TrkC-NNR5 transfectants and of naturally permissive TrkC-bearing Schwann cells and astrocytes, as did recombinant PDNF. Two specific inhibitors of Trk autophosphorylation (K252a and AG879) and inhibitors of Trk-induced MAPK/Erk (U0126) and Akt kinase (LY294002) signaling, but not an inhibitor of insulin-like growth factor 1 receptor, abrogated TrkC-mediated cell invasion. Antibody to TrkC blockedT. cruziinfection of the TrkC-NNR5 transfectants and of cells that naturally express TrkC. The TrkC antibody also significantly and specifically reduced cutaneous infection in a mouse model of acute Chagas' disease. TrkC is ubiquitously expressed in the peripheral and central nervous systems, and in nonneural cells infected byT. cruzi, including cardiac and gastrointestinal muscle cells. Thus, TrkC is implicated as a functional PDNF receptor in cell entry, independently of sialic acid recognition, mediating broadT. cruziinfection bothin vitroandin vivo.


2014 ◽  
Vol 82 (7) ◽  
pp. 2890-2901 ◽  
Author(s):  
Marilena Gallotta ◽  
Giovanni Gancitano ◽  
Giampiero Pietrocola ◽  
Marirosa Mora ◽  
Alfredo Pezzicoli ◽  
...  

ABSTRACTGroup A streptococcus (GAS) is a human pathogen causing a wide repertoire of mild and severe diseases for which no vaccine is yet available. We recently reported the identification of three protein antigens that in combination conferred wide protection against GAS infection in mice. Here we focused our attention on the characterization of one of these three antigens, Spy0269, a highly conserved, surface-exposed, and immunogenic protein of unknown function. Deletion of thespy0269gene in a GAS M1 isolate resulted in very long bacterial chains, which is indicative of an impaired capacity of the knockout mutant to properly divide. Confocal microscopy and immunoprecipitation experiments demonstrated that the protein was mainly localized at the cell septum and could interactin vitrowith the cell division protein FtsZ, leading us to hypothesize that Spy0269 is a member of the GAS divisome machinery. Predicted structural domains and sequence homologies with known streptococcal adhesins suggested that this antigen could also play a role in mediating GAS interaction with host cells. This hypothesis was confirmed by showing that recombinant Spy0269 could bind to mammalian epithelial cellsin vitroand thatLactococcus lactisexpressing Spy0269 on its cell surface could adhere to mammalian cellsin vitroand to mice nasal mucosain vivo. On the basis of these data, we believe that Spy0269 is involved both in bacterial cell division and in adhesion to host cells and we propose to rename this multifunctional moonlighting protein as SpyAD (StreptococcuspyogenesAdhesion andDivision protein).


2021 ◽  
Author(s):  
Daniel Morgan Foulkes ◽  
Keri McLean ◽  
Marta Sloniecka ◽  
Dominic Byrne ◽  
Atikah S Haneef ◽  
...  

Infection from the opportunistic pathogen Pseudomonas aeruginosa is one of leading causes of disability and mortality worldwide and the world health organisation has listed it with the highest priority for the need of new antimicrobial therapies. P. aeruginosa strains responsible for the poorest clinical outcomes express either ExoS or ExoU, which are injected into target host cells via the type III secretion system (T3SS). ExoS is a bifunctional cytotoxin that promotes intracellular survival of invasive P. aeruginosa by preventing targeting of the bacteria to acidified intracellular compartments and lysosomal degradation. ExoU is a potent phospholipase which causes rapid destruction of host cell plasma membranes, leading to acute tissue damage and bacterial dissemination. Fluoroquinolones are usually employed as a first line of therapy as they have been shown to be more active against P. aeruginosa in vitro than other antimicrobial classes. However, their overuse over the past decade has caused alarming rates of antibiotic resistance to emerge. In certain clinical situations, aminoglycosides have been shown to be more effective then fluoroquinolones, despite their reduced potency towards P. aeruginosa in vitro. In this study, we evaluated the effects of fluoroquinolones (moxifloxacin and ciprofloxacin) and aminoglycosides (tobramycin and gentamycin) on T3SS expression and toxicity, in corneal epithelial cell infection models. We discovered tobramycin disrupted T3SS expression and inhibited both ExoS and ExoU mediated cytotoxicity, protecting infected HCE-T cells even at concentrations below the minimal inhibitory concentrations (MIC). Fluoroquinolones moxifloxacin and ciprofloxacin, however, upregulated the T3SS and in particular did not subvert the cytotoxic effects of ExoS and ExoU.


2009 ◽  
Vol 206 (9) ◽  
pp. 1899-1911 ◽  
Author(s):  
Sarah M. McWhirter ◽  
Roman Barbalat ◽  
Kathryn M. Monroe ◽  
Mary F. Fontana ◽  
Mamoru Hyodo ◽  
...  

The innate immune system responds to unique molecular signatures that are widely conserved among microbes but that are not normally present in host cells. Compounds that stimulate innate immune pathways may be valuable in the design of novel adjuvants, vaccines, and other immunotherapeutics. The cyclic dinucleotide cyclic-di–guanosine monophosphate (c-di-GMP) is a recently appreciated second messenger that plays critical regulatory roles in many species of bacteria but is not produced by eukaryotic cells. In vivo and in vitro studies have previously suggested that c-di-GMP is a potent immunostimulatory compound recognized by mouse and human cells. We provide evidence that c-di-GMP is sensed in the cytosol of mammalian cells via a novel immunosurveillance pathway. The potency of cytosolic signaling induced by c-di-GMP is comparable to that induced by cytosolic delivery of DNA, and both nucleic acids induce a similar transcriptional profile, including triggering of type I interferons and coregulated genes via induction of TBK1, IRF3, nuclear factor κB, and MAP kinases. However, the cytosolic pathway that senses c-di-GMP appears to be distinct from all known nucleic acid–sensing pathways. Our results suggest a novel mechanism by which host cells can induce an inflammatory response to a widely produced bacterial ligand.


Sign in / Sign up

Export Citation Format

Share Document