Identification of a Potent Inhibitor Targeting the Spike Protein of Pandemic Human Coronavirus, SARS-CoV-2 by Computational Methods

Author(s):  
SRUTHI UNNI ◽  
Snehal Aouti ◽  
Padmanabhan Balasundaram

<p>Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is an emerging new viral pathogen that causes severe respiratory disease. SARS-CoV-2 is responsible for an outbreak of COVID-19 pandemic worldwide. As there are no confirmed antiviral drugs or vaccines currently available for the treatment of COVID-19, discovering potent inhibitors or vaccines are urgently required for the benefit of humanity. The glycosylated Spike protein (S-protein) directly interacts with human angiotensin-converting enzyme 2 (ACE2) receptor through the receptor-binding domain (RBD) of S-protein. As the S-protein is exposed to the surface and is essential for entry into the host, the S-protein can be considered as a first-line therapeutic target for antiviral therapy and vaccine development. In-silico screening, docking and molecular dynamics simulation studies were performed to identify repurposing drugs using DrugBank and PubChem library against the RBD of S-protein. The study identified a laxative drug, Bisoxatin (DB09219), which is used for the treatment of constipation and preparation of the colon for surgical procedures. It binds nicely at the S-protein – ACE2 interface by making substantial pi-pi interactions with Tyr505 in the ‘Site 1’ hook region of RBD and hydrophilic interactions with Glu406, Ser494 and Thr500. Bisoxatin consistently binds to the protein throughout the 100 ns simulation. Taken together, we propose that the discovered molecule, Bisoxatin may be a potent repurpose drug to develop new chemical libraries for inhibiting SARS-CoV-2 entry into the host.</p>

Author(s):  
SRUTHI UNNI ◽  
Snehal Aouti ◽  
Padmanabhan Balasundaram

<p>Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is an emerging new viral pathogen that causes severe respiratory disease. SARS-CoV-2 is responsible for an outbreak of COVID-19 pandemic worldwide. As there are no confirmed antiviral drugs or vaccines currently available for the treatment of COVID-19, discovering potent inhibitors or vaccines are urgently required for the benefit of humanity. The glycosylated Spike protein (S-protein) directly interacts with human angiotensin-converting enzyme 2 (ACE2) receptor through the receptor-binding domain (RBD) of S-protein. As the S-protein is exposed to the surface and is essential for entry into the host, the S-protein can be considered as a first-line therapeutic target for antiviral therapy and vaccine development. In-silico screening, docking and molecular dynamics simulation studies were performed to identify repurposing drugs using DrugBank and PubChem library against the RBD of S-protein. The study identified a laxative drug, Bisoxatin (DB09219), which is used for the treatment of constipation and preparation of the colon for surgical procedures. It binds nicely at the S-protein – ACE2 interface by making substantial pi-pi interactions with Tyr505 in the ‘Site 1’ hook region of RBD and hydrophilic interactions with Glu406, Ser494 and Thr500. Bisoxatin consistently binds to the protein throughout the 100 ns simulation. Taken together, we propose that the discovered molecule, Bisoxatin may be a potent repurpose drug to develop new chemical libraries for inhibiting SARS-CoV-2 entry into the host.</p>


2021 ◽  
Author(s):  
Jiale Shi ◽  
Yuejun Shi ◽  
Ruixue Xiu ◽  
Gang Wang ◽  
Rui Liang ◽  
...  

The receptor binding domain (RBD) of the coronavirus spike protein (S) has been verified to be the main target for potent neutralizing antibodies (nAbs) in most coronaviruses, and the N-terminal domain (NTD) of some betacoronaviruses has also been indicated to induce nAbs. For alphacoronavirus HCoV-229E, its RBD has been shown to have neutralizing epitopes, and these epitopes could change over time. However, whether neutralizing epitopes exist on the NTD and whether these epitopes change like those of the RBD are still unknown. Here, we verified that neutralizing epitopes exist on the NTD of HCoV-229E. Furthermore, we characterized an NTD targeting nAb 5H10, which could neutralize both pseudotyped and authentic HCoV-229E VR740 in vitro. Epitope mapping indicated that 5H10 targeted motif E1 (147-167 aa) and identified F159 as critical for 5H10 binding. More importantly, our results revealed that motif E1 was highly conserved among clinical isolates except for F159. Further data proved that mutations at position 159 gradually appeared over time and could completely abolish the neutralizing ability of 5H10, supporting the notion that position 159 may be under selective pressure during the human epidemic. In addition, we also found that contemporary clinical serum has a stronger binding capacity for the NTD of contemporary strains than historic strains, proving that the epitope on the NTD could change over time. In summary, these findings define a novel neutralizing epitope on the NTD of HCoV-229E S and provide a theoretical basis for the design of vaccines against HCoV-229E or related coronaviruses. Importance Characterization of the neutralizing epitope of the spike (S) protein, the major invasion protein of coronaviruses, can help us better understand the evolutionary characteristics of these viruses and promote vaccine development. To date, the neutralizing epitope distribution of alphacoronaviruses is not well known. Here, we identified a neutralizing antibody that targeted the N-terminal domain (NTD) of the alphacoronavirus HCoV-229E S protein. Epitope mapping revealed a novel epitope that was not previously discovered in HCoV-229E. Further studies identified an important residue, F159. Mutations that gradually appeared over time at this site abolished the neutralizing ability of 5H10, indicating that selective pressure occurred at this position in the spread of HCoV-229E. Furthermore, we found that the epitopes within the NTD also changed over time. Taken together, our findings defined a novel neutralizing epitope and highlighted the role of the NTD in the future prevention and control of HCoV-229E or related coronaviruses.


2019 ◽  
Vol 93 (15) ◽  
Author(s):  
Yixuan Hou ◽  
Hanzhong Ke ◽  
Jineui Kim ◽  
Dongwan Yoo ◽  
Yunfang Su ◽  
...  

ABSTRACT Porcine epidemic diarrhea virus (PEDV) causes high mortality in neonatal piglets; however, effective and safe vaccines are still not available. We hypothesized that inactivation of the 2′-O-methyltransferase (2′-O-MTase) activity of nsp16 and the endocytosis signal of the spike protein attenuates PEDV yet retains its immunogenicity in pigs. We generated a recombinant PEDV, KDKE4A, with quadruple alanine substitutions in the catalytic tetrad of the 2′-O-MTase using a virulent infectious cDNA clone, icPC22A, as the backbone. Next, we constructed another mutant, KDKE4A-SYA, by abolishing the endocytosis signal of the spike protein of KDKE4A. Compared with icPC22A, the KDKE4A and KDKE4A-SYA mutants replicated less efficiently in vitro but induced stronger type I and type III interferon responses. The pathogenesis and immunogenicities of the mutants were evaluated in gnotobiotic piglets. The virulence of KDKE4A-SYA and KDKE4A was significantly reduced compared with that of icPC22A. Mortality rates were 100%, 17%, and 0% in the icPC22A-, KDKE4A-, and KDKE4A-SYA-inoculated groups, respectively. At 21 days postinoculation (dpi), all surviving pigs were challenged orally with a high dose of icPC22A. The KDKE4A-SYA- and KDKE4A-inoculated pigs were protected from the challenge, because no KDKE4A-SYA- and one KDKE4A-inoculated pig developed diarrhea whereas all the pigs in the mock-inoculated group had severe diarrhea, and 33% of them died. Furthermore, we serially passaged the KDKE4A-SYA mutant in pigs three times and did not find any reversion of the introduced mutations. The data suggest that KDKE4A-SYA may be a PEDV vaccine candidate. IMPORTANCE PEDV is the most economically important porcine enteric viral pathogen and has caused immense economic losses in the pork industries in many countries. Effective and safe vaccines are desperately required but still not available. 2′-O-MTase (nsp16) is highly conserved among coronaviruses (CoVs), and the inactivation of nsp16 in live attenuated vaccines has been attempted for several betacoronaviruses. We show that inactivation of both 2′-O-MTase and the endocytosis signal of the spike protein is an approach to designing a promising live attenuated vaccine for PEDV. The in vivo passaging data also validated the stability of the KDKE4A-SYA mutant. KDKE4A-SYA warrants further evaluation in sows and their piglets and may be used as a platform for further optimization. Our findings further confirmed that nsp16 can be a universal target for CoV vaccine development and will aid in the development of vaccines against other emerging CoVs.


2020 ◽  
Author(s):  
Eman Ali Awadelkareem ◽  
Sumaia Awad Elkariem Ali

Abstract Background: Infectious bronchitis (IB) is a highly contagious respiratory disease in chickens and produces economic loss within the poultry industry. This disease is caused by a single stranded RNA virus belonging to Cronaviridae family. This study aimed to design a potential multi-epitopes vaccine against Infectious bronchitis virus spike protein (S). Protein characterization was also performed for IBV spike protein.Methods: The present study used various tools in Immune Epitope Database (IEDB) to predict conserved B and T cell epitopes against IBV spike (S) protein that may perform a significant role in provoking the resistance response to IBV infection. Results: In B cell prediction methods, three epitopes (1139KKSSYY1144, 1140KSSYYT1145, 1141SSYYT1145) were selected as surface, linear and antigenic epitopes. Many MHCI and MHCII epitopes were predicted for IBV S protein. Among them 982YYITARDMY990 and 983YITARDMYM991 epitopes displayed high antigenicity, no allergenicity and no toxicity as well as great linkage with MHCI and MHCII alleles. Moreover, docking analysis of MHCI epitope produced strong binding affinity with BF2 alleles. Conclusion: Five conserved epitopes were expected from spike glycoprotein of IBV as the best B and T cell epitopes due to high antigenicity, no allergenicity and no toxicity. In addition, MHC epitopes showed great linkage with MHC alleles as well as strong interaction with BF2 alleles. These epitopes should be designed and incorporated and then tested as multi-epitope vaccine against IBV.


Author(s):  
Micholas Smith ◽  
Jeremy C. Smith

The novel Wuhan coronavirus (SARS-CoV-2) has been sequenced, and the virus shares substantial similarity with SARS-CoV. Here, using a computational model of the spike protein (S-protein) of SARS-CoV-2 interacting with the human ACE2 receptor, we make use of the world's most powerful supercomputer, SUMMIT, to enact an ensemble docking virtual high-throughput screening campaign and identify small-molecules which bind to either the isolated Viral S-protein at its host receptor region or to the S protein-human ACE2 interface. We hypothesize the identified small-molecules may be repurposed to limit viral recognition of host cells and/or disrupt host-virus interactions. A ranked list of compounds is given that can be tested experimentally.<br>


2020 ◽  
Vol 58 (230) ◽  
Author(s):  
Qian Gao ◽  
Jing Liu ◽  
Zhilong Mu ◽  
Xianpeng Yan ◽  
Jay Narayan Shah ◽  
...  

The cases of coronavirusdisease 2019 in children have been increasing with the ongoing pandemic.The finding suggests children have mild symptoms and a short course of the disease. Angiotensinconverting enzyme-2 mediates entry of the virus into the cell, the combination of virus and ACE2 leads to an increase in activity of angiotensin II, resulting in acute injury to lungs, myocardium and other organs. The infection causes down-regulation of ACE2 expression. The ACE2 plays an important role in the infection progression and clinical characteristics of COVID-19. Works on ACE2 and virus spike protein have future prospects of strategic information on prevention, management as well as vaccine development.


2020 ◽  
Author(s):  
Fatima Amanat ◽  
Shirin Strohmeier ◽  
Raveen Rathnasinghe ◽  
Michael Schotsaert ◽  
Lynda Coughlan ◽  
...  

AbstractThe spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the prime target for vaccine development. The spike protein mediates both binding to host cells and membrane fusion and is also so far the only known viral target of neutralizing antibodies. Coronavirus spike proteins are large trimers that are relatively instable, a feature that might be enhanced by the presence of a polybasic cleavage site in the SARS-CoV-2 spike. Exchange of K986 and V987 to prolines has been shown to stabilize the trimers of SARS-CoV-1 and the Middle Eastern respiratory syndrome coronavirus spikes. Here, we test multiple versions of a soluble spike protein for their immunogenicity and protective effect against SARS-CoV-2 challenge in a mouse model that transiently expresses human angiotensin converting enzyme 2 via adenovirus transduction. Variants tested include spike protein with a deleted polybasic cleavage site, the proline mutations, a combination thereof, as well as the wild type protein. While all versions of the protein were able to induce neutralizing antibodies, only the antigen with both a deleted cleavage site and the PP mutations completely protected from challenge in this mouse model.ImportanceA vaccine for SARS-CoV-2 is urgently needed. A better understanding of antigen design and attributes that vaccine candidates need to have to induce protective immunity is of high importance. The data presented here validates the choice of antigens that contain the PP mutation and suggests that deletion of the polybasic cleavage site could lead to a further optimized design.


2021 ◽  
Author(s):  
George W. Carnell ◽  
Katarzyna A. Ciazynska ◽  
David A. Wells ◽  
Xiaoli Xiong ◽  
Ernest T. Aguinam ◽  
...  

AbstractThe majority of SARS-CoV-2 vaccines in use or in advanced clinical development are based on the viral spike protein (S) as their immunogen. S is present on virions as pre-fusion trimers in which the receptor binding domain (RBD) is stochastically open or closed. Neutralizing antibodies have been described that act against both open and closed conformations. The long-term success of vaccination strategies will depend upon inducing antibodies that provide long-lasting broad immunity against evolving, circulating SARS-CoV-2 strains, while avoiding the risk of antibody dependent enhancement as observed with other Coronavirus vaccines. Here we have assessed the results of immunization in a mouse model using an S protein trimer that is arrested in the closed state to prevent exposure of the receptor binding site and therefore interaction with the receptor. We compared this with a range of other modified S protein constructs, including representatives used in current vaccines. We found that all trimeric S proteins induce a long-lived, strongly neutralizing antibody response as well as T-cell responses. Notably, the protein binding properties of sera induced by the closed spike differed from those induced by standard S protein constructs. Closed S proteins induced more potent neutralising responses than expected based on the degree to which they inhibit interactions between the RBD and ACE2. These observations suggest that closed spikes recruit different, but equally potent, virus-inhibiting immune responses than open spikes, and that this is likely to include neutralizing antibodies against conformational epitopes present in the closed conformation. Together with their improved stability and storage properties we suggest that closed spikes may be a valuable component of refined, next-generation vaccines.


Author(s):  
Federico Cocozza ◽  
Ester Piovesana ◽  
Nathalie Névo ◽  
Xavier Lahaye ◽  
Julian Buchrieser ◽  
...  

ABSTRACTSARS-CoV-2 entry is mediated by binding of the spike protein (S) to the surface receptor ACE2 and subsequent priming by TMPRRS2 allowing membrane fusion. Here, we produced extracellular vesicles (EVs) exposing ACE2 and demonstrate that ACE2-EVs are efficient decoys for SARS-CoV-2 S protein-containing lentivirus. Reduction of infectivity positively correlates with the level of ACE2, is 500 to 1500 times more efficient than with soluble ACE2 and further enhanced by the inclusion of TMPRSS2.


Author(s):  
Micholas Smith ◽  
Jeremy C. Smith

The novel Wuhan coronavirus (SARS-CoV-2) has been sequenced, and the virus shares substantial similarity with SARS-CoV. Here, using a computational model of the spike protein (S-protein) of SARS-CoV-2 interacting with the human ACE2 receptor, we make use of the world's most powerful supercomputer, SUMMIT, to enact an ensemble docking virtual high-throughput screening campaign and identify small-molecules which bind to either the isolated Viral S-protein at its host receptor region or to the S protein-human ACE2 interface. We hypothesize the identified small-molecules may be repurposed to limit viral recognition of host cells and/or disrupt host-virus interactions. A ranked list of compounds is given that can be tested experimentally.<br>


Sign in / Sign up

Export Citation Format

Share Document