scholarly journals Natural Compounds from Djiboutian Medicinal Plants as Inhibitors of COVID-19 by in Silico Investigations

Author(s):  
abdirahman elmi ◽  
S. al jawad sayem ◽  
Mohamed Ahmed ◽  
fatouma mohamed

The new coronavirus type SARS-Cov 2 (severe acute respiratory syndrome), which appeared in autumn 2019 in China, became a global pandemic in a few months. In this work, we looked for the potential anti SARS-Cov 2 of the compounds isolated from three Djiboutian medicinal plants namely Acacia seyal, Cymbopogon commutatus, and Indigofera caerulea. For this we carried out a docking with nine biomolecules, β-Sitosterol , Quercetin, Catechin, Lupeol, Rutin, Kaempferol, Gallic acid, Piperitone and Limonene on three target sites which are SARS-CoV-2 main protease (Mp), SARS-CoV-2 receptor binding domain (RBD) and human furin protease. These targets are chosen because of their role in the process of penetration of the virus into human cells and its multiplication. The phenolic compounds have a very good afinity on these three target sites with binding energies of up to -9.098 kcal/mol for rutin on SARS-CoV-2 Mp, much better than the two reference drugs hydroxychloroquine (-5.816 kcal / mol) and remdesivir (-7.194 kcal/mol). These natural compounds do not present toxicities and can be used pending In vitro and In vivo evaluations.

2020 ◽  
Author(s):  
abdirahman elmi ◽  
S. al jawad sayem ◽  
Mohamed Ahmed ◽  
fatouma mohamed

The new coronavirus type SARS-Cov 2 (severe acute respiratory syndrome), which appeared in autumn 2019 in China, became a global pandemic in a few months. In this work, we looked for the potential anti SARS-Cov 2 of the compounds isolated from three Djiboutian medicinal plants namely Acacia seyal, Cymbopogon commutatus, and Indigofera caerulea. For this we carried out a docking with nine biomolecules, β-Sitosterol , Quercetin, Catechin, Lupeol, Rutin, Kaempferol, Gallic acid, Piperitone and Limonene on three target sites which are SARS-CoV-2 main protease (Mp), SARS-CoV-2 receptor binding domain (RBD) and human furin protease. These targets are chosen because of their role in the process of penetration of the virus into human cells and its multiplication. The phenolic compounds have a very good afinity on these three target sites with binding energies of up to -9.098 kcal/mol for rutin on SARS-CoV-2 Mp, much better than the two reference drugs hydroxychloroquine (-5.816 kcal / mol) and remdesivir (-7.194 kcal/mol). These natural compounds do not present toxicities and can be used pending In vitro and In vivo evaluations.


Author(s):  
ABDIRAHMAN ELMI ◽  
S. AL-JAWAD SAYEM ◽  
MOHAMED AHMED ◽  
FATOUMA ABDOUL-LATIF

Objective: The new coronavirus type SARS-Cov 2 (severe acute respiratory syndrome), which appeared in autumn 2019 in China, became a global pandemic in a few months. In this work, we looked for the potential anti SARS-Cov 2 of the compounds isolated from three Djiboutian medicinal plants, namely Acacia seyal, Cymbopogon commutatus, and Indigofera caerulea. Methods: We carried out a molecular docking with nine biomolecules, β-Sitosterol, Quercetin, Catechin, Lupeol, Rutin, Kaempferol, Gallic acid, Piperitone and Limonene on three target sites which are SARS-CoV-2 main protease (Mp), SARS-CoV-2 receptor-binding domain (RBD) and human furin protease. These targets are chosen because of their role in the process of penetration of the virus into human cells and its multiplication. Moreover, the predictions of pharmacokinetic parameters as well as toxicological properties have been determined using an online bioinformatics tool named SwissADME and AdmetSAR respectively. Results: The phenolic compounds have a very good affinity on these three target sites with binding energies of up to-9.098 kcal/mol for rutin on SARS-CoV-2 Mp, much better than the two reference drugs hydroxychloroquine (-5.816 kcal/mol) and remdesivir (-7.194 kcal/mol). Except for β-Sitosterol, the tested biomolecules have weak toxicity. Conclusion: These natural compounds can be used against covid 19 pending In vitro and In vivo evaluations.


2020 ◽  
Vol 3 (10) ◽  
pp. 266-275
Author(s):  
Shaleen Jain ◽  
Dr. Asmita Das

Facing worldwide challenges associated with multifactorial etiology of breast cancer, designing of combinatorial therapies using natural compounds is currently the emergent way of treating several cancers including breast cancer in a synergistic way, which may mitigate several problems associated with multiple receptor targeting. In this research, Estrogen receptor positive breast cancer was taken as prototype and several key receptors associated with this particular disease were targeted by virtual screening of natural compounds found in Indian originated medicinal plants using Computer aided Drug Designing (CADD) strategies. We found the combination of Carpusin, Paulownin Cornigerine, Nororientaline, Oryzalexin B, Romucosine H and Colchicine as effective against six potential receptors i.e. FGFR2, ESR1, PIK3CA, PIK3CB, PIK3CD and AR in Estrogen receptor positive breast cancer with their binding energies in the range of ∆G ≤ -8.0 Kcal/mol as well as significant number of common amino acid binding residues as compared with binding sites of receptors. Thus this research holds significant implications for the designing of combinatorial therapeutic agents against breast cancer which can be further tested in-vitro and in-vivo to prove their synergistic efficiency.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3822 ◽  
Author(s):  
R.P. Vivek-Ananth ◽  
Abhijit Rana ◽  
Nithin Rajan ◽  
Himansu S. Biswal ◽  
Areejit Samal

Presently, there are no approved drugs or vaccines to treat COVID-19, which has spread to over 200 countries and at the time of writing was responsible for over 650,000 deaths worldwide. Recent studies have shown that two human proteases, TMPRSS2 and cathepsin L, play a key role in host cell entry of SARS-CoV-2. Importantly, inhibitors of these proteases were shown to block SARS-CoV-2 infection. Here, we perform virtual screening of 14,011 phytochemicals produced by Indian medicinal plants to identify natural product inhibitors of TMPRSS2 and cathepsin L. AutoDock Vina was used to perform molecular docking of phytochemicals against TMPRSS2 and cathepsin L. Potential phytochemical inhibitors were filtered by comparing their docked binding energies with those of known inhibitors of TMPRSS2 and cathepsin L. Further, the ligand binding site residues and non-covalent interactions between protein and ligand were used as an additional filter to identify phytochemical inhibitors that either bind to or form interactions with residues important for the specificity of the target proteases. This led to the identification of 96 inhibitors of TMPRSS2 and 9 inhibitors of cathepsin L among phytochemicals of Indian medicinal plants. Further, we have performed molecular dynamics (MD) simulations to analyze the stability of the protein-ligand complexes for the three top inhibitors of TMPRSS2 namely, qingdainone, edgeworoside C and adlumidine, and of cathepsin L namely, ararobinol, (+)-oxoturkiyenine and 3α,17α-cinchophylline. Interestingly, several herbal sources of identified phytochemical inhibitors have antiviral or anti-inflammatory use in traditional medicine. Further in vitro and in vivo testing is needed before clinical trials of the promising phytochemical inhibitors identified here.


2021 ◽  
Author(s):  
Dafydd R Owen ◽  
Charlotte M N Allerton ◽  
Annaliesa S Anderson ◽  
Lisa Aschenbrenner ◽  
Melissa Avery ◽  
...  

The worldwide outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become an established global pandemic. Alongside vaccines, antiviral therapeutics are an important part of the healthcare response to counter the ongoing threat presented by COVID-19. Here, we report the discovery and characterization of PF-07321332, an orally bioavailable SARS-CoV-2 main protease inhibitor with in vitro pan-human coronavirus antiviral activity, and excellent off-target selectivity and in vivo safety profiles. PF-07321332 has demonstrated oral activity in a mouse-adapted SARS-CoV-2 model and has achieved oral plasma concentrations exceeding the in vitro antiviral cell potency, in a phase I clinical trial in healthy human participants. Clinical Trial Registration ID #: NCT04756531


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 514 ◽  
Author(s):  
Bruno Silva Andrade ◽  
Preetam Ghosh ◽  
Debmalya Barh ◽  
Sandeep Tiwari ◽  
Raner José Santana Silva ◽  
...  

Background: SARS-CoV-2 is the causal agent of the current coronavirus disease 2019 (COVID-19) pandemic. They are enveloped, positive-sense, single-stranded RNA viruses of the Coronaviridae family. Proteases of SARS-CoV-2 are necessary for viral replication, structural assembly, and pathogenicity. The approximately 33.8 kDa Mpro protease of SARS-CoV-2 is a non-human homologue and is highly conserved among several coronaviruses, indicating that Mpro could be a potential drug target for Coronaviruses. Methods: Herein, we performed computational ligand screening of four pharmacophores (OEW, remdesivir, hydroxychloroquine and N3) that are presumed to have positive effects against SARS-CoV-2 Mpro protease (6LU7), and also screened 50,000 natural compounds from the ZINC Database dataset against this protease target. Results: We found 40 pharmacophore-like structures of natural compounds from diverse chemical classes that exhibited better affinity of docking as compared to the known ligands. The 11 best selected ligands, namely ZINC1845382, ZINC1875405, ZINC2092396, ZINC2104424, ZINC44018332, ZINC2101723, ZINC2094526, ZINC2094304, ZINC2104482, ZINC3984030, and ZINC1531664, are mainly classified as beta-carboline, alkaloids, and polyflavonoids, and all displayed interactions with dyad CYS145 and HIS41 from the protease pocket in a similar way as other known ligands. Conclusions: Our results suggest that these 11 molecules could be effective against SARS-CoV-2 protease and may be subsequently tested in vitro and in vivo to develop novel drugs against this virus.


2021 ◽  
Author(s):  
Xiaofei Wang ◽  
Ao Hu ◽  
Xiangyu Chen ◽  
Yixin Zhang ◽  
Fei Yu ◽  
...  

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic of novel corona virus disease (COVID-19). The neutralizing monoclonal antibodies (mAbs) targeting the receptor binding domain (RBD) of SARS-CoV-2 are among the most promising strategies to prevent and treat COVID-19. However, SARS-CoV-2 variants of concern (VOCs) profoundly reduced the efficacies of most of mAbs and vaccines approved for clinical use. Herein, we demonstrated mAb 35B5 efficiently neutralizes both wild-type (WT) SARS-CoV-2 and VOCs, including B.1.617.2 (delta) variant, in vitro and in vivo. Cryo-electron microscopy (cryo-EM) revealed that 35B5 neutralizes SARS-CoV-2 by targeting a unique epitope that avoids the prevailing mutation sites on RBD identified in circulating VOCs, providing the molecular basis for its pan-neutralizing efficacy. The 35B5-binding epitope could also be exploited for the rational design of a universal SARS-CoV-2 vaccine.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 514
Author(s):  
Bruno Silva Andrade ◽  
Preetam Ghosh ◽  
Debmalya Barh ◽  
Sandeep Tiwari ◽  
Raner José Santana Silva ◽  
...  

Background: SARS-CoV-2 is the causal agent of the current coronavirus disease 2019 (COVID-19) pandemic. They are enveloped, positive-sense, single-stranded RNA viruses of the Coronaviridae family. Proteases of SARS-CoV-2 are necessary for viral replication, structural assembly, and pathogenicity. The approximately 33.8 kDa Mpro protease of SARS-CoV-2 is a non-human homologue and is highly conserved among several coronaviruses, indicating that Mpro could be a potential drug target for Coronaviruses. Methods: Herein, we performed computational ligand screening of four pharmacophores (OEW, remdesivir, hydroxychloroquine and N3) that are presumed to have positive effects against SARS-CoV-2 Mpro protease (6LU7), and also screened 50,000 natural compounds from the ZINC Database dataset against this protease target. Results: We found 40 pharmacophore-like structures of natural compounds from diverse chemical classes that exhibited better affinity of docking as compared to the known ligands. The 11 best selected ligands, namely ZINC1845382, ZINC1875405, ZINC2092396, ZINC2104424, ZINC44018332, ZINC2101723, ZINC2094526, ZINC2094304, ZINC2104482, ZINC3984030, and ZINC1531664, are mainly classified as beta-carboline, alkaloids, and polyflavonoids, and all displayed interactions with dyad CYS145 and HIS41 from the protease pocket in a similar way as other known ligands. Conclusions: Our results suggest that these 11 molecules could be effective against SARS-CoV-2 protease and may be subsequently tested in vitro and in vivo to develop novel drugs against this virus.


2021 ◽  
Vol 12 ◽  
Author(s):  
Godwin Anywar ◽  
Muhammad Akram ◽  
Muhammad Amjad Chishti

Introduction: The worldwide burden of viral infections has triggered a resurgence in the search for new and more efficient antiviral drugs. Scientists are also repurposing existing natural compounds such as the antimalarial drug artemisinin from Artemesia annua L. as potential drug candidates for some of the emerging and re-emerging viral infections such as covid-19Aim: The aim of this review was to analyse the existing literature to explore the actual or potential natural antiviral compounds from African and Asian medicinal plants as lead compounds in the drug discovery process.Methods: We searched the literature on African and Asian medicinal plant species as antiviral agents for HIV-1 and the novel coronavirus (SARS-CoV-2) in various databases and search engines such as Web of Science, Google Scholar and PubMed. The search was limited to in vitro, in vivo, and clinical studies and excluded in silico studies.Results: We present 16 plant species with actual or potential antiviral activity against HIV-1 and SARS-CoV-2. These plant species span the continents of Africa and Asia where they are widely used for treating several other ailments.Conclusion: Natural compounds from plants can play a significant role in the clinical management of HIV/AIDS and the covid-19 pandemic. More research needs to be conducted to investigate the potential toxicities of the various compounds and their efficacies in clinical settings.


2020 ◽  
Vol 26 ◽  
Author(s):  
Kondeti Ramudu Shanmugam ◽  
Bhasha Shanmugam ◽  
Gangigunta Venkatasubbaiah ◽  
Sahukari Ravi ◽  
Kesireddy Sathyavelu Reddy

Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.


Sign in / Sign up

Export Citation Format

Share Document