scholarly journals Selective Chemical Functionalization at N6 mdA Residues in DNA

Author(s):  
Manuel Nappi ◽  
Alexander Hofer ◽  
Shankar Balasubramanian ◽  
Matthew Gaunt

Selective chemistry that modifies the structure of DNA and RNA is essential to understanding the role of epigenetic modifications. We report a visible-light-activated photocatalytic process that introduces a covalent modification at a C(sp3 )–H bond in the methyl group of N6-methyl-adenosine–an epigenetic modification of emerging importance. A carefully orchestrated reaction combines reduction of a nitropyridine to form a nitrosopyridine spin-trapping reagent and an exquisitely selective tertiary aminemediated hydrogen-atom abstraction at the N6-methyl group to form an a-amino radical. Cross-coupling of the putative a-amino radical with nitrosopyridine leads to a stable conjugate, installing a label at N6- methyl-adenosine. We show that N6-methyl-adenosine-containing oligonucleotides can be enriched from complex mixtures, paving the way for applications to identify this modification in genomic DNA and RNA

2020 ◽  
Author(s):  
Manuel Nappi ◽  
Alexander Hofer ◽  
Shankar Balasubramanian ◽  
Matthew Gaunt

Selective chemistry that modifies the structure of DNA and RNA is essential to understanding the role of epigenetic modifications. We report a visible-light-activated photocatalytic process that introduces a covalent modification at a C(sp3 )–H bond in the methyl group of N6-methyl-adenosine–an epigenetic modification of emerging importance. A carefully orchestrated reaction combines reduction of a nitropyridine to form a nitrosopyridine spin-trapping reagent and an exquisitely selective tertiary aminemediated hydrogen-atom abstraction at the N6-methyl group to form an a-amino radical. Cross-coupling of the putative a-amino radical with nitrosopyridine leads to a stable conjugate, installing a label at N6- methyl-adenosine. We show that N6-methyl-adenosine-containing oligonucleotides can be enriched from complex mixtures, paving the way for applications to identify this modification in genomic DNA and RNA


2022 ◽  
Author(s):  
Shan Qi ◽  
Javier Mota ◽  
Siu-Hong Chan ◽  
Johanna Villarreal ◽  
Nan Dai ◽  
...  

Methyltransferase like-3 (METTL3) and METTL14 complex transfers a methyl group from S-adenosyl-L-methionine to N6 amino group of adenosine bases in RNA (m6A) and DNA (m6dA). Emerging evidence highlights a role of METTL3-METTL14 in the chromatin context, especially in processes where DNA and RNA are held in close proximity. However, a mechanistic framework about specificity for substrate RNA/DNA and their interrelationship remain unclear. By systematically studying methylation activity and binding affinity to a number of DNA and RNA oligos with different propensities to form inter- or intra-molecular duplexes or single-stranded molecules in vitro, we uncover an inverse relationship for substrate binding and methylation and show that METTL3-METTL14 preferentially catalyzes the formation of m6dA in single-stranded DNA (ssDNA), despite weaker binding affinity to DNA. In contrast, it binds structured RNAs with high affinity, but methylates the target adenosine in RNA (m6A) much less efficiently than it does in ssDNA. We also show that METTL3-METTL14-mediated methylation of DNA is largely restricted by structured RNA elements prevalent in long noncoding and other cellular RNAs.


Author(s):  
Sergey Dolomatov ◽  
Walery Zukow ◽  
Nikolay Novikov ◽  
Alexandra Markaryan ◽  
Elena Eremeeva

Analyzed the literature devoted to the changes in the expression of the RAS proteins of cancer cells. A brief review of protein expression dynamics PAC in malignant tumors and the possible role of epigenetic mechanisms in these processes. Through research epigenetic mechanisms state for cancer have been developed principally new techniques for their correction, based on the use of selective regulators systems covalent modification-histone proteins (for example, deacetylase inhibitor) and microRNA synthesis technologies. Literature data show promising pharmacological correction epigenetic modification of chromatin in the treatment of cancer.


1986 ◽  
Vol 236 (3) ◽  
pp. 811-820 ◽  
Author(s):  
L S Brunauer ◽  
S Clarke

The physiological role of protein carboxy-group methylation reactions in human erythrocytes was studied with calmodulin as an endogenous methyl-group acceptor. The steady-state degree of calmodulin carboxy-group methylation is substoichiometric both in intact cells and in a lysed-cell system (about 0.0003 mol of methyl groups/mol of polypeptide). Purified erythrocyte calmodulin is a substrate for a partially purified erythrocyte carboxy-group methyltransferase and can be methylated to the extent of about 0.0007-0.001 mol of methyl groups/mol of polypeptide. This erythrocyte protein methyltransferase displays an apparent specificity for atypical racemized and/or isomerized D-aspartate and L-isoaspartate residues [McFadden & Clarke (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 2460-2464; Murray & Clarke (1984) J. Biol. Chem. 259, 10722-10732]. Exposure of calmodulin to elevated temperatures before methylation results in racemization of aspartate and/or asparagine residues, and may result in isoaspartate formation as well. The methylatability of these samples also increases as a function of time of heating, independent of the pH (over the range pH 5-9) or Ca2+ concentration; the most significant increase occurs during the initial 60 min, when calmodulin retains a fraction of its biological activity. These results are consistent with the hypothesis that methylation of calmodulin may occur at these uncommon aspartate residues, but are not consistent with a regulatory role for the methylation reaction.


2021 ◽  
Vol 11 (6) ◽  
pp. 513
Author(s):  
Zheng Zhang ◽  
Meng Gu ◽  
Zhongze Gu ◽  
Yan-Ru Lou

Genetic polymorphisms are defined as the presence of two or more different alleles in the same locus, with a frequency higher than 1% in the population. Since the discovery of long non-coding RNAs (lncRNAs), which refer to a non-coding RNA with a length of more than 200 nucleotides, their biological roles have been increasingly revealed in recent years. They regulate many cellular processes, from pluripotency to cancer. Interestingly, abnormal expression or dysfunction of lncRNAs is closely related to the occurrence of human diseases, including cancer and degenerative neurological diseases. Particularly, their polymorphisms have been found to be associated with altered drug response and/or drug toxicity in cancer treatment. However, molecular mechanisms are not yet fully elucidated, which are expected to be discovered by detailed studies of RNA–protein, RNA–DNA, and RNA–lipid interactions. In conclusion, lncRNAs polymorphisms may become biomarkers for predicting the response to chemotherapy in cancer patients. Here we review and discuss how gene polymorphisms of lncRNAs affect cancer chemotherapeutic response. This knowledge may pave the way to personalized oncology treatments.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Takuma Nakatsuka ◽  
Keisuke Tateishi ◽  
Hiroyuki Kato ◽  
Hiroaki Fujiwara ◽  
Keisuke Yamamoto ◽  
...  

AbstractWhile the significance of acquired genetic abnormalities in the initiation of hepatocellular carcinoma (HCC) has been established, the role of epigenetic modification remains unknown. Here we identified the pivotal role of histone methyltransferase G9a in the DNA damage-triggered initiation of HCC. Using liver-specific G9a-deficient (G9aΔHep) mice, we revealed that loss of G9a significantly attenuated liver tumor initiation caused by diethylnitrosamine (DEN). In addition, pharmacological inhibition of G9a attenuated the DEN-induced initiation of HCC. After treatment with DEN, while the induction of γH2AX and p53 were comparable in the G9aΔHep and wild-type livers, more apoptotic hepatocytes were detected in the G9aΔHep liver. Transcriptome analysis identified Bcl-G, a pro-apoptotic Bcl-2 family member, to be markedly upregulated in the G9aΔHep liver. In human cultured hepatoma cells, a G9a inhibitor, UNC0638, upregulated BCL-G expression and enhanced the apoptotic response after treatment with hydrogen peroxide or irradiation, suggesting an essential role of the G9a-Bcl-G axis in DNA damage response in hepatocytes. The proposed mechanism was that DNA damage stimuli recruited G9a to the p53-responsive element of the Bcl-G gene, resulting in the impaired enrichment of p53 to the region and the attenuation of Bcl-G expression. G9a deletion allowed the recruitment of p53 and upregulated Bcl-G expression. These results demonstrate that G9a allows DNA-damaged hepatocytes to escape p53-induced apoptosis by silencing Bcl-G, which may contribute to the tumor initiation. Therefore, G9a inhibition can be a novel preventive strategy for HCC.


2021 ◽  
Vol 22 (10) ◽  
pp. 5112
Author(s):  
Lotte van Beek ◽  
Éilís McClay ◽  
Saleha Patel ◽  
Marianne Schimpl ◽  
Laura Spagnolo ◽  
...  

Poly (ADP-ribose) polymerases (PARP) 1-3 are well-known multi-domain enzymes, catalysing the covalent modification of proteins, DNA, and themselves. They attach mono- or poly-ADP-ribose to targets using NAD+ as a substrate. Poly-ADP-ribosylation (PARylation) is central to the important functions of PARP enzymes in the DNA damage response and nucleosome remodelling. Activation of PARP happens through DNA binding via zinc fingers and/or the WGR domain. Modulation of their activity using PARP inhibitors occupying the NAD+ binding site has proven successful in cancer therapies. For decades, studies set out to elucidate their full-length molecular structure and activation mechanism. In the last five years, significant advances have progressed the structural and functional understanding of PARP1-3, such as understanding allosteric activation via inter-domain contacts, how PARP senses damaged DNA in the crowded nucleus, and the complementary role of histone PARylation factor 1 in modulating the active site of PARP. Here, we review these advances together with the versatility of PARP domains involved in DNA binding, the targets and shape of PARylation and the role of PARPs in nucleosome remodelling.


2020 ◽  
Author(s):  
Jing Wei ◽  
Jia Cheng ◽  
Nicholas J Waddell ◽  
Zi-Jun Wang ◽  
Xiaodong Pang ◽  
...  

Abstract Emerging evidence suggests that epigenetic mechanisms regulate aberrant gene transcription in stress-associated mental disorders. However, it remains to be elucidated about the role of DNA methylation and its catalyzing enzymes, DNA methyltransferases (DNMTs), in this process. Here, we found that male rats exposed to chronic (2-week) unpredictable stress exhibited a substantial reduction of Dnmt3a after stress cessation in the prefrontal cortex (PFC), a key target region of stress. Treatment of unstressed control rats with DNMT inhibitors recapitulated the effect of chronic unpredictable stress on decreased AMPAR expression and function in PFC. In contrast, overexpression of Dnmt3a in PFC of stressed animals prevented the loss of glutamatergic responses. Moreover, the stress-induced behavioral abnormalities, including the impaired recognition memory, heightened aggression, and hyperlocomotion, were partially attenuated by Dnmt3a expression in PFC of stressed animals. Finally, we found that there were genome-wide DNA methylation changes and transcriptome alterations in PFC of stressed rats, both of which were enriched at several neural pathways, including glutamatergic synapse and microtubule-associated protein kinase signaling. These results have therefore recognized the potential role of DNA epigenetic modification in stress-induced disturbance of synaptic functions and cognitive and emotional processes.


Sign in / Sign up

Export Citation Format

Share Document