scholarly journals Three- and Four-Site Models for Heavy Water: SPC/E-HW, TIP3P-HW, and TIP4P/2005-HW

Author(s):  
Johanna-Barbara Linse ◽  
Jochen S. Hub

Heavy water or deuterium oxide, D<sub>2</sub>O, is used as solvent in various biophysical and chemical experiments. To model such experiments with molecular dynamics simulations, effective pair potentials for heavy water are required that reproduce the well-known physicochemical differences relative to light water. We present three effective pair potentials for heavy water, denoted SPC/E-HW, TIP3P-HW, and TIP4P/2005-HW. The models were parametrized by modifying widely used three- and four-site models for light water, with aim of maintaining the specific characteristics of the light water models. At room temperature, the SPC/E-HW and TIP3P-HW capture the modulations relative to light water of the mass and electron densities, heat of vaporization, diffusion coefficient, and water structure. TIP4P/2005-HW captures in addition the density of heavy water over a wide temperature range.

2021 ◽  
Author(s):  
Johanna-Barbara Linse ◽  
Jochen S. Hub

Heavy water or deuterium oxide, D<sub>2</sub>O, is used as solvent in various biophysical and chemical experiments. To model such experiments with molecular dynamics simulations, effective pair potentials for heavy water are required that reproduce the well-known physicochemical differences relative to light water. We present three effective pair potentials for heavy water, denoted SPC/E-HW, TIP3P-HW, and TIP4P/2005-HW. The models were parametrized by modifying widely used three- and four-site models for light water, with aim of maintaining the specific characteristics of the light water models. At room temperature, the SPC/E-HW and TIP3P-HW capture the modulations relative to light water of the mass and electron densities, heat of vaporization, diffusion coefficient, and water structure. TIP4P/2005-HW captures in addition the density of heavy water over a wide temperature range.


Author(s):  
Sachini P. Kadaoluwa Pathirannahalage ◽  
Nastaran Meftahi ◽  
Aaron Elbourne ◽  
Alessia C. G. Weiss ◽  
Chris F. McConville ◽  
...  

Author(s):  
Bo Qiu ◽  
Hua Bao ◽  
Xiulin Ruan

In this paper, thermoelectric properties of bulk PbTe are calculated using first principles calculations and molecular dynamics simulations. The Full Potential Linearized Augmented Plane Wave (FP-LAPW) method is first employed to calculate the PbTe band structure. The transport coefficients (Seebeck coefficient, electrical conductivity, and electron thermal conductivity) are then computed using Boltzmann transport equation (BTE) under the constant relaxation time approximation. Interatomic pair potentials in the Buckingham form are also derived using ab initio effective charges and total energy data. The effective interatomic pair potentials give excellent results on equilibrium lattice parameters and elastic constants for PbTe. The lattice thermal conductivity of PbTe is then calculated using molecular dynamics simulations with the Green-Kubo method. In the end, the figure of merit of PbTe is computed revealing the thermoelectric capability of this material, and the multiscale simulation approach is shown to have the potential to identify novel thermoelectric materials.


Minerals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 280
Author(s):  
Ying Lu ◽  
Weiping Liu ◽  
Xuming Wang ◽  
Huaigang Cheng ◽  
Fangqin Cheng ◽  
...  

Barite has numerous applications including barium mud for oil well drilling, manufacture of elemental barium, filler for paper and rubber industries, and contrast material for X-ray radiology for the digestive system. Currently, froth flotation is the main method for the beneficiation of barite using fatty acid as a typical collector. In this research, it was found that lauryl phosphate is also a promising collector for barite flotation. Results from microflotation, contact angle, and zeta potential indicate that lauryl phosphate is adsorbed on the barite surface and thus achieves superior flotation efficiency at a wide pH range. The interfacial water structure and wetting characteristics of barite surface with/without lauryl phosphate adsorption were also evaluated by molecular dynamics simulations (MDS). The results from molecular dynamics simulations and interaction energy calculations are in accord with the experimental results, which suggest that lauryl phosphate might be a potential collector for the flotation of barite.


1991 ◽  
Vol 46 (3) ◽  
pp. 221-228 ◽  
Author(s):  
Sheng-Bai Zhu ◽  
G. Wilse Robinson

AbstractThe structure and properties of a 1.791 molal aqueous LiF solution is investigated by performing molecular dynamics simulations using a water model with both bond flexibility and instantaneously responsive polarization. On average, each cation is in close contact with about one anion. This causes a strong overlap of the hydration shells and an almost complete breakdown of the surrounding water structure. While the lone pairs of the hydration waters in the first Li+ shell occupy preferentially tetrahedral positions, the orientational distribution of the solvent molecules around F--is quite uniform. By comparing various autocorrelation functions of water molecules in the solution and in the pure liquid, the influence of solvated ions on the translational, rotational and vibrational motions of hydration water can be studied


Sign in / Sign up

Export Citation Format

Share Document