scholarly journals Extracting Interface Correlations from the Pair Distribution Function of Composite Materials

Author(s):  
Harry Geddes ◽  
Henry D. Hutchinson ◽  
Alex R Ha ◽  
Nicholas P. Funnell ◽  
Andrew Goodwin

<div> <div> <div> <p>Using a non-negative matrix factorisation (NMF) approach, we show how the pair distribution function (PDF) of complex mixtures can be deconvolved into the contributions from the individual phase components and also the interface between phases. Our focus is on the model system Fe||Fe3O4. We establish proof-of-concept using idealised PDF data generated from established theory-driven models of the Fe||Fe3O4 interface. Using X-ray PDF measurements for corroded Fe samples, and employing our newly-developed NMF analysis, we extract the experimental interface PDF (‘iPDF’) for this same system. We find excellent agreement between theory and experiment. The implications of our results in the broader context of interface characterisation for complex functional materials are discussed. </p> </div> </div> </div>

2021 ◽  
Author(s):  
Harry Geddes ◽  
Henry D. Hutchinson ◽  
Alex R Ha ◽  
Nicholas P. Funnell ◽  
Andrew Goodwin

<div> <div> <div> <p>Using a non-negative matrix factorisation (NMF) approach, we show how the pair distribution function (PDF) of complex mixtures can be deconvolved into the contributions from the individual phase components and also the interface between phases. Our focus is on the model system Fe||Fe3O4. We establish proof-of-concept using idealised PDF data generated from established theory-driven models of the Fe||Fe3O4 interface. Using X-ray PDF measurements for corroded Fe samples, and employing our newly-developed NMF analysis, we extract the experimental interface PDF (‘iPDF’) for this same system. We find excellent agreement between theory and experiment. The implications of our results in the broader context of interface characterisation for complex functional materials are discussed. </p> </div> </div> </div>


Nanoscale ◽  
2021 ◽  
Author(s):  
Harry Geddes ◽  
Henry Hutchinson ◽  
Alex R Ha ◽  
Nicholas P Funnell ◽  
Andrew Goodwin

Using a non-negative matrix factorisation (NMF) approach, we show how the pair distribution function (PDF) of complex mixtures can be deconvolved into the contributions from the individual phase components and...


2013 ◽  
Vol 46 (2) ◽  
pp. 461-465 ◽  
Author(s):  
Olivier Masson ◽  
Philippe Thomas

The atomic pair distribution function (PDF) as obtained from X-ray or neutron total scattering experiments has proved to be powerful in obtaining valuable structural information for many complex functional materials, be they amorphous or crystalline. In the case of measurements made with X-rays and for samples containing more than one kind of atom, the usefulness of the PDF is, however, somewhat hampered because of the lack of an exact and simple expression relating it to the structure of the materials. Only an approximate relationship exits, which is still in use today. This is particularly detrimental given the wide availability of X-ray sources and the increasing quality of PDFs obtained with laboratory sources. In this paper, the exact and explicit expression of the PDF as obtained from X-ray scattering is derived with respect to partial functions. This expression allows exact and efficient calculation of the PDF from any structure model without using approximate formulae.


2020 ◽  
Author(s):  
Anuradha Pallipurath ◽  
Francesco Civati ◽  
Jonathan Skelton ◽  
Dean Keeble ◽  
Clare Crowley ◽  
...  

X-ray pair distribution function analysis is used with first-principles molecular dynamics simulations to study the co-operative H<sub>2</sub>O binding, structural dynamics and host-guest interactions in the channel hydrate of diflunisal.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 272
Author(s):  
Seungyeol Lee ◽  
Huifang Xu ◽  
Hongwu Xu ◽  
Joerg Neuefeind

The crystal structure of moganite from the Mogán formation on Gran Canaria has been re-investigated using high-resolution synchrotron X-ray diffraction (XRD) and X-ray/neutron pair distribution function (PDF) analyses. Our study for the first time reports the anisotropic atomic displacement parameters (ADPs) of a natural moganite. Rietveld analysis of synchrotron XRD data determined the crystal structure of moganite with the space group I2/a. The refined unit-cell parameters are a = 8.7363(8), b = 4.8688(5), c = 10.7203(9) Å, and β = 90.212(4)°. The ADPs of Si and O in moganite were obtained from X-ray and neutron PDF analyses. The shapes and orientations of the anisotropic ellipsoids determined from X-ray and neutron measurements are similar. The anisotropic ellipsoids for O extend along planes perpendicular to the Si-Si axis of corner-sharing SiO4 tetrahedra, suggesting precession-like movement. Neutron PDF result confirms the occurrence of OH over some of the tetrahedral sites. We postulate that moganite nanomineral is stable with respect to quartz in hypersaline water. The ADPs of moganite show a similar trend as those of quartz determined by single-crystal XRD. In short, the combined methods can provide high-quality structural parameters of moganite nanomineral, including its ADPs and extra OH position at the surface. This approach can be used as an alternative means for solving the structures of crystals that are not large enough for single-crystal XRD measurements, such as fine-grained and nanocrystalline minerals formed in various geological environments.


2018 ◽  
Vol 233 (6) ◽  
pp. 361-370 ◽  
Author(s):  
Anna-Lena Hansen ◽  
Bastian Dietl ◽  
Martin Etter ◽  
Reinhard K. Kremer ◽  
David C. Johnson ◽  
...  

Abstract Results of combined synchrotron X-ray diffraction and pair distribution function experiments performed on the layered compound CrTe3 provide evidence for a short range structural distortion of one of the two crystallographically independent CrTe6 octahedra. The distortion is caused by higher mobility of one crystallographically distinct Te ion, leading to an unusual large Debye Waller factor. In situ high temperature X-ray diffraction investigations show an initial crystallization of a minor amount of elemental Te followed by decomposition of CrTe3 into Cr5Te8 and Te. Additional experiments provide evidence that the Te impurity (<1%) cannot be avoided. Analyses of structural changes in the temperature range 100–754 K show a pronounced anisotropic expansion of the lattice parameters. The differing behavior of the crystal axes is explained on the basis of structural distortions of the Cr4Te16 structural building units. An abrupt distortion of the structure occurs at T≈250 K, which then remains nearly constant down to 100 K. The structural distortion affects the spin exchange interactions between Cr3+ cations. A significant splitting between field-cooled (fc) and zero-field-cooled (zfc) magnetic susceptibility is observed below about 200 K. Applying a small external magnetic field results in a substantial spontaneous magnetization, reminiscent of ferro- or ferrimagnet exchange interactions below ~240 K. A Debye temperature of ~150 K was extracted from heat capacity measurements.


Sign in / Sign up

Export Citation Format

Share Document