scholarly journals Optimizing Fractional Compositions To Achieve Extraordinary Properties

Author(s):  
Andrew Falkowski ◽  
Steven Kauwe ◽  
Taylor Sparks

Traditional, data-driven materials discovery involves screening chemical systems with machine learning algorithms and selecting candidates that excel in a target property. The number of screening candidates grows infinitely large as the fractional resolution of compositions the number of included elements increases. The computational infeasibility and probability of overlooking a successful candidate grow likewise. Our approach shifts the optimization focus from model parameters to the fractions of each element in a composition. Using a pretrained network, CrabNet, and writing a custom loss function to govern a vector of element fractions, compositions can be optimized such that a predicted property is maximized or minimized. Single and multi-property optimization examples are presented that highlight the capabilities and robustness of this approach to inverse design.

2021 ◽  
Author(s):  
Andrew Falkowski ◽  
Steven Kauwe ◽  
Taylor Sparks

Traditional, data-driven materials discovery involves screening chemical systems with machine learning algorithms and selecting candidates that excel in a target property. The number of screening candidates grows infinitely large as the fractional resolution of compositions the number of included elements increases. The computational infeasibility and probability of overlooking a successful candidate grow likewise. Our approach shifts the optimization focus from model parameters to the fractions of each element in a composition. Using a pretrained network, CrabNet, and writing a custom loss function to govern a vector of element fractions, compositions can be optimized such that a predicted property is maximized or minimized. Single and multi-property optimization examples are presented that highlight the capabilities and robustness of this approach to inverse design.


Author(s):  
Jakub Gęca

The consequences of failures and unscheduled maintenance are the reasons why engineers have been trying to increase the reliability of industrial equipment for years. In modern solutions, predictive maintenance is a frequently used method. It allows to forecast failures and alert about their possibility. This paper presents a summary of the machine learning algorithms that can be used in predictive maintenance and comparison of their performance. The analysis was made on the basis of data set from Microsoft Azure AI Gallery. The paper presents a comprehensive approach to the issue including feature engineering, preprocessing, dimensionality reduction techniques, as well as tuning of model parameters in order to obtain the highest possible performance. The conducted research allowed to conclude that in the analysed case , the best algorithm achieved 99.92% accuracy out of over 122 thousand test data records. In conclusion, predictive maintenance based on machine learning represents the future of machine reliability in industry.


2021 ◽  
Vol 21 (8) ◽  
pp. 2379-2405
Author(s):  
Luigi Cesarini ◽  
Rui Figueiredo ◽  
Beatrice Monteleone ◽  
Mario L. V. Martina

Abstract. Weather index insurance is an innovative tool in risk transfer for disasters induced by natural hazards. This paper proposes a methodology that uses machine learning algorithms for the identification of extreme flood and drought events aimed at reducing the basis risk connected to this kind of insurance mechanism. The model types selected for this study were the neural network and the support vector machine, vastly adopted for classification problems, which were built exploring thousands of possible configurations based on the combination of different model parameters. The models were developed and tested in the Dominican Republic context, based on data from multiple sources covering a time period between 2000 and 2019. Using rainfall and soil moisture data, the machine learning algorithms provided a strong improvement when compared to logistic regression models, used as a baseline for both hazards. Furthermore, increasing the amount of information provided during the training of the models proved to be beneficial to the performances, increasing their classification accuracy and confirming the ability of these algorithms to exploit big data and their potential for application within index insurance products.


2021 ◽  
Author(s):  
Luigi Cesarini ◽  
Rui Figueiredo ◽  
Beatrice Monteleone ◽  
Mario Martina

<p>A steady increase in the frequency and severity of extreme climate events has been observed in recent years, causing losses amounting to billions of dollars. Floods and droughts are responsible for almost half of those losses, severely affecting people’s livelihoods in the form of damaged property, goods and even loss of life. Weather index insurance is an innovative tool in risk transfer for disasters induced by natural hazards. In this type of insurance, payouts are triggered when an index calculated from one or multiple environmental variables exceeds a predefined threshold. Thus, contrary to traditional insurance, it does not require costly and time-consuming post-event loss assessments. Its ease of application makes it an ideal solution for developing countries, where fast payouts in light of a catastrophic event would guarantee the survival of an economic sector, for example, providing the monetary resources necessary for farmers to sustain a prolonged period of extreme temperatures. The main obstacle to a wider application of this type of insurance mechanism stems from the so-called basis risk, which arises when a loss event takes place but a payout is not issued, or vice-versa.</p><p>This study proposes and tests the application of machine learning algorithms for the identification of extreme flood and drought events in the context of weather index insurance, with the aim of reducing basis risk. Neural networks and support vector machines, widely adopted for classification problems, are employed exploring thousands of possible configurations based on the combination of different model parameters. The models were developed and tested in the Dominican Republic context, leveraging datasets from multiple sources with low latency, covering a time period between 2000 and 2019. Using rainfall (GSMaP, CMORPH, CHIRPS, CCS, PERSIANN and IMERG) and soil moisture (ERA5) data, the machine learning algorithms provided a strong improvement when compared to logistic regression models, used as a baseline for both hazards. Furthermore, increasing the number of information provided during model training proved to be beneficial to the performances, improving their classification accuracy and confirming the ability of these algorithms to exploit big data. Results highlight the potential of machine learning for application within index insurance products.</p>


Generally, air pollution refer to the release of various pollutants into the air which are threatening the human health and planet as well. The air pollution is the major dangerous vicious to the humanity ever faced. It causes major damage to animals, plants etc., if this keeps on continuing, the human being will face serious situations in the upcoming years. The major pollutants are from the transport and industries. So, to prevent this problem major sectors have to predict the air quality from transport and industries .In existing project there are many disadvantages. The project is about estimating the PM2.5 concentration by designing a photograph based method. But photographic method is not alone sufficient to calculate PM2.5 because it contains only one of the concentration of pollutants and it calculates only PM2.5 so there are some missing out of the major pollutants and the information needed for controlling the pollution .So thereby we proposed the machine learning techniques by user interface of GUI application. In this multiple dataset can be combined from the different source to form a generalized dataset and various machine learning algorithms are used to get the results with maximum accuracy. From comparing various machine learning algorithms we can obtain the best accuracy result. Our evaluation gives the comprehensive manual to sensitivity evaluation of model parameters with regard to overall performance in prediction of air high quality pollutants through accuracy calculation. Additionally to discuss and compare the performance of machine learning algorithms from the dataset with evaluation of GUI based user interface air quality prediction by attributes.


2020 ◽  
Author(s):  
Alyssa Huang ◽  
Yu Sun

Volunteering is very important to high school students because it not only allows the teens to apply the knowledge and skills they have acquired to real-life scenarios, but it also enables them to make an association between helping others and their own joy of fulfillment. Choosing the right volunteering opportunities to work on can influence how the teens interact with that cause and how well they can serve the community through their volunteering services. However, high school students who look for volunteer opportunities often do not have enough information about the opportunities around them, so they tend to take whatever opportunity that comes across. On the other hand, as organizations who look for volunteers usually lack effective ways to evaluate and select the volunteers that best fit the jobs, they will just take volunteers on a first-come, firstserve basis. Therefore, there is a need to build a platform that serves as a bridge to connect the volunteers and the organizations that offer volunteer opportunities. In this paper, we focus on creating an intelligent platform that can effectively evaluate volunteer performance and predict best-fit volunteer opportunities by using machine learning algorithms to study 1) the correlation between volunteer profiles (e.g. demographics, preferred jobs, talents, previous volunteering events, etc.) and predictive volunteer performance in specific events and 2) the correlation between volunteer profiles and future volunteer opportunities. Two highest-scoring machine learning algorithms are proposed to make predictions on volunteer performance and event recommendations. We demonstrate that the two highest-scoring algorithms are able to make the best prediction for each query. Alongside the practice with the algorithms, a mobile application, which can run on both iPhone and Android platforms is also created to provide a very convenient and effective way for the volunteers and event supervisors to plan and manage their volunteer activities. As a result of this research, volunteers and organizations that look for volunteers can both benefit from this data-driven platform for a more positive overall experience.


Sign in / Sign up

Export Citation Format

Share Document