scholarly journals New Materials Design Using Excitonic Quantum Effects: Applications for Fuel Cells, Catalysts, Superconductive and Bioactive Materials

Author(s):  
Vladimir B. Kopylov ◽  
Paul Leonard

<p>This manauscript begins with a theoretical substantiation of the possibility of thermal (dark) generation of electronically excited states (excitons) in the structure of oxides as a fundamental quantum-chemical property that ensures their continuous activity. For the first time, experimentally, a macro-scale process flow and its quantum nature are proven using a wide range of tools. The mechanism, features of the chemical structure of electron-hole components, and their role in the formation of catalytic properties have been extensively studied. The application of these new principles for the creation of highly efficient catalysts, energy generation and energy storage devices has been evaluated.</p>

2021 ◽  
Author(s):  
Vladimir B. Kopylov ◽  
Paul Leonard

<p>This manauscript begins with a theoretical substantiation of the possibility of thermal (dark) generation of electronically excited states (excitons) in the structure of oxides as a fundamental quantum-chemical property that ensures their continuous activity. For the first time, experimentally, a macro-scale process flow and its quantum nature are proven using a wide range of tools. The mechanism, features of the chemical structure of electron-hole components, and their role in the formation of catalytic properties have been extensively studied. The application of these new principles for the creation of highly efficient catalysts, energy generation and energy storage devices has been evaluated.</p>


2020 ◽  
Vol 11 ◽  
pp. 662-670
Author(s):  
Matangi Sricharan ◽  
Bikesh Gupta ◽  
Sreejesh Moolayadukkam ◽  
H S S Ramakrishna Matte

MoO3 is a versatile two-dimensional transition metal oxide having applications in areas such as energy storage devices, electronic devices and catalysis. To efficiently utilize the properties of MoO3 arising from its two-dimensional nature exfoliation is necessary. In this work, the exfoliation of MoO3 is carried out in 2-butanone for the first time. The achieved concentration of the dispersion is about 0.57 mg·mL−1 with a yield of 5.7%, which are the highest values reported to date. These high values of concentration and yield can be attributed to a favorable matching of energies involved in exfoliation and stabilization of MoO3 nanosheets in 2-butanone. Interestingly, the MoO3 dispersion in 2-butanone retains its intrinsic nature even after exposure to sunlight for 24 h. The composites of MoO3 nanosheets were used as an electrode material for supercapacitors and showed a high specific capacitance of 201 F·g−1 in a three-electrode configuration at a scan rate of 50 mV·s−1.


2021 ◽  
Author(s):  
SOYEON PARK ◽  
KUN (KELVIN) FU

Polymer nanocomposites have advantages in mechanical, electrical, and optical properties compared to individual components. These unique properties of the nanocomposites have attracted attention in many applications, including electronics, robotics, biomedical fields, automotive industries. To achieve their high performance, it is crucial to control the orientation of nanomaterials within the polymer matrix. For example, the electric conductivity will be maximized in the ordered direction of conductive nanomaterials such as graphene and carbon nanotubes (CNTs). Conventional fabrication methods are commonly used to obtain polymer nanocomposites with the controlled alignment of nanomaterials using electric or magnetic fields, fluid flow, and shear forces. Such approaches may be complex in preparing a manufacturing system, have low fabrication rate, and even limited structure scalability and complexity required for customized functional products. Recently, additive manufacturing (AM), also called 3D printing, has been developed as a major fabrication technology for nanocomposites with aligned reinforcements. AM has the ability to control the orientation of nanoparticles and offers a great way to produce the composites with cost-efficiency, high productivity, scalability, and design flexibility. Herein, we propose a manufacturing process using AM for the architected structure of polymer nanocomposites with oriented nanomaterials using a polylactic acid polymer as the matrix and graphite and CNTs as fillers. AM can achieve the aligned orientation of the nanofillers along the printing direction. Thus, it enables the fabrication of multifunctional nanocomposites with complex shapes and higher precision, from micron to macro scale. This method will offer great opportunities in the advanced applications that require complex multiscale structures such as energy storage devices (e.g., batteries and supercapacitors) and structural electronic devices (e.g., circuits and sensors).


2018 ◽  
Vol 08 (06) ◽  
pp. 1830004 ◽  
Author(s):  
Dawei Wang ◽  
Ge Wang ◽  
Shunsuke Murakami ◽  
Zhongming Fan ◽  
Antonio Feteira ◽  
...  

Lead-based electroceramics such as Pb(Zr.Ti)O3 (PZT) and its derivatives have excellent piezoelectric, pyroelectric and energy storage properties and can be used in a wide range of applications. Potential lead-free replacements for PZT such as potassium sodium niobate (KNN) and sodium bismuth titanate (NBT) have a much more limited range of useful properties and have been optimized primarily for piezoelectric applications. Here, we review the initial results on a new generation of lead-free electroceramics based on BiFeO3-BaTiO3 (BF-BT) highlighting the essential crystal chemistry that permits a wide range of functional properties. We demonstrate that with the appropriate dopants and heat treatment, BF-BT can be used to fabricate commercially viable ceramics for applications, ranging from sensors, multilayer actuators, capacitors and high-density energy storage devices. We also assess the potential of BF-BT-based ceramics for electrocaloric and pyroelectric applications.


2020 ◽  
Vol 2 (3) ◽  
pp. 183-201 ◽  
Author(s):  
Xuan Liu ◽  
Kang Li

Abstract As a large energy consumer, the railway systems in many countries have been electrified gradually for the purposes of performance improvement and emission reduction. With the widespread utilization of energy-saving technologies such as regenerative braking techniques, and in support of the full electrification of railway systems in a wide range of application conditions, energy storage systems (ESSes) have come to play an essential role. In this paper, some recent developments in railway ESSes are reviewed and a comprehensive comparison is presented for various ESS technologies. The foremost functionalities of the railway ESSes are presented together with possible solutions proposed from the academic arena and current practice in the railway industry. In addition, the challenges and future trends of ESSes in the railway industry are briefly discussed.


Author(s):  
Jovica V. Milanović

Future power systems will be significantly different compared with their present states. They will be characterized by an unprecedented mix of a wide range of electricity generation and transmission technologies, as well as responsive and highly flexible demand and storage devices with significant temporal and spatial uncertainty. The importance of probabilistic approaches towards power system stability analysis, as a subsection of power system studies routinely carried out by power system operators, has been highlighted in previous research. However, it may not be feasible (or even possible) to accurately model all of the uncertainties that exist within a power system. This paper describes for the first time an integral approach to probabilistic stability analysis of power systems, including small and large angular stability and frequency stability. It provides guidance for handling uncertainties in power system stability studies and some illustrative examples of the most recent results of probabilistic stability analysis of uncertain power systems. This article is part of the themed issue ‘Energy management: flexibility, risk and optimization’.


2016 ◽  
Vol 4 (36) ◽  
pp. 13754-13763 ◽  
Author(s):  
Tao Cheng ◽  
Yi-Zhou Zhang ◽  
Jian-Peng Yi ◽  
Lei Yang ◽  
Jian-Dong Zhang ◽  
...  

Inkjet-printed flexible transparent aesthetic supercapacitors were constructed for the first time using PEDOT:PSS/Ag grids as both current collectors and electrodes.


Chemosensors ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Aleksandra Kalinowska ◽  
Magdalena Wicik ◽  
Patrycja Matusiak ◽  
Patrycja Ciosek-Skibińska

Differential sensing techniques are becoming nowadays an attractive alternative to classical selective recognition methods due to the “fingerprinting” possibility allowing identifying various analytes without the need to fabricate highly selective binding recognition sites. This work shows for the first time that surfactant-based ion-sensitive microspheres as optodes in the microscale can be designed as cross-sensitive materials; thus, they are perfect candidates as sensing elements for differential sensing. Four types of the newly developed chemosensory microspheres—anion- and cation-selective, sensitive toward amine- and hydroxyl moiety—exhibited a wide range of linear response (two to five orders of magnitude) in absorbance and/or fluorescence mode, great time stability (at least 2 months), as well as good fabrication repeatability. The array of four types of chemosensitive microspheres was capable of perfect pattern-based identification of eight neurotransmitters: dopamine, epinephrine, norepinephrine, γ-aminobutyric acid (GABA), acetylcholine, histamine, taurine, and phenylethylamine. Moreover, it allowed the quantification of neurotransmitters, also in mixtures. Its selectivity toward neurotransmitters was studied using α- and β-amino acids (Ala, Asp, Pro, Tyr, taurine) in simulated blood plasma solution. It was revealed that the chemosensory optode set could recognize subtle differences in the chemical structure based on the differential interaction of microspheres with various moieties present in the molecule. The presented method is simple, versatile, and convenient, and it could be adopted to various quantitative and qualitative analytical tasks due to the simple adjusting of microspheres components and measurement conditions.


Author(s):  
Ankur Soam

Apart from the magnetic properties, ferrites have been considered as efficient electrodes for next generation energy storage devices. This chapter will include applications of spinel ferrites such as MnFe2O4, CoFe2O4, ZnFe2O4 and NiFe2O4 in supercapacitor. In ferrites, the charge storage arises from the fast-reversible surface redox reactions at the electrode/electrolyte interface. In particular, the electrode material with high specific capacitance, wide range of operating potential, low synthesis cost and its availability on the earth are highly desirable to fabricate a supercapacitor. Ferrites with mixed oxidation states have proved as promising electrodes in supercapacitors. In this chapter, we summarize the different synthesis methods of ferrites based nanocomposites and their electrochemical properties for supercapacitor application.


Nanoscale ◽  
2015 ◽  
Vol 7 (3) ◽  
pp. 908-913 ◽  
Author(s):  
Yu-chen Karen Chen-Wiegart ◽  
Miriam Aileen Figueroa-Santos ◽  
Stanislas Petrash ◽  
Jose Garcia-Miralles ◽  
Jun Wang

X-ray nano-tomography reveals 3D characters in hybrid conductive adhesives, which are favorable in a wide range of applications, including a lead-free solder in micro-chips, and in electronics and energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document