scholarly journals Machine Learning Enables Polymer Cloud-Point Engineering via Inverse Design

2018 ◽  
Author(s):  
Jatin Kumar ◽  
Qianxiao Li ◽  
Karen Y.T. Tang ◽  
Tonio Buonassisi ◽  
Anibal L. Gonzalez-Oyarce ◽  
...  

<div><div><div><p>Inverse design is an outstanding challenge in disordered systems with multiple length scales such as polymers, particularly when designing polymers with desired phase behavior. We demonstrate high-accuracy tuning of poly(2-oxazoline) cloud point via machine learning. With a design space of four repeating units and a range of molecular masses, we achieve an accuracy of 4°C root mean squared error (RMSE) in a temperature range of 24– 90°C, employing gradient boosting with decision trees. The RMSE is >3x better than linear and polynomial regression. We perform inverse design via particle-swarm optimization, predicting and synthesizing 17 polymers with constrained design at 4 target cloud points from 37 to 80°C. Our approach challenges the status quo in polymer design with a machine learning algorithm, that is capable of fast and systematic discovery of new polymers.</p></div></div></div>

2018 ◽  
Author(s):  
Jatin Kumar ◽  
Qianxiao Li ◽  
Karen Y.T. Tang ◽  
Tonio Buonassisi ◽  
Anibal L. Gonzalez-Oyarce ◽  
...  

<div><div><div><p>Inverse design is an outstanding challenge in disordered systems with multiple length scales such as polymers, particularly when designing polymers with desired phase behavior. We demonstrate high-accuracy tuning of poly(2-oxazoline) cloud point via machine learning. With a design space of four repeating units and a range of molecular masses, we achieve an accuracy of 4°C root mean squared error (RMSE) in a temperature range of 24– 90°C, employing gradient boosting with decision trees. The RMSE is >3x better than linear and polynomial regression. We perform inverse design via particle-swarm optimization, predicting and synthesizing 17 polymers with constrained design at 4 target cloud points from 37 to 80°C. Our approach challenges the status quo in polymer design with a machine learning algorithm, that is capable of fast and systematic discovery of new polymers.</p></div></div></div>


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Mohammad Nahid Hossain ◽  
Mohammad Helal Uddin ◽  
K. Thapa ◽  
Md Abdullah Al Zubaer ◽  
Md Shafiqul Islam ◽  
...  

Cognitive impairment has a significantly negative impact on global healthcare and the community. Holding a person’s cognition and mental retention among older adults is improbable with aging. Early detection of cognitive impairment will decline the most significant impact of extended disease to permanent mental damage. This paper aims to develop a machine learning model to detect and differentiate cognitive impairment categories like severe, moderate, mild, and normal by analyzing neurophysical and physical data. Keystroke and smartwatch have been used to extract individuals’ neurophysical and physical data, respectively. An advanced ensemble learning algorithm named Gradient Boosting Machine (GBM) is proposed to classify the cognitive severity level (absence, mild, moderate, and severe) based on the Standardised Mini-Mental State Examination (SMMSE) questionnaire scores. The statistical method “Pearson’s correlation” and the wrapper feature selection technique have been used to analyze and select the best features. Then, we have conducted our proposed algorithm GBM on those features. And the result has shown an accuracy of more than 94%. This paper has added a new dimension to the state-of-the-art to predict cognitive impairment by implementing neurophysical data and physical data together.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pakpoom Wongyikul ◽  
Nuttamon Thongyot ◽  
Pannika Tantrakoolcharoen ◽  
Pusit Seephueng ◽  
Piyapong Khumrin

AbstractPrescription errors in high alert drugs (HAD), a group of drugs that have a high risk of complications and potential negative consequences, are a major and serious problem in medicine. Standardized hospital interventions, protocols, or guidelines were implemented to reduce the errors but were not found to be highly effective. Machine learning driven clinical decision support systems (CDSS) show a potential solution to address this problem. We developed a HAD screening protocol with a machine learning model using Gradient Boosting Classifier and screening parameters to identify the events of HAD prescription errors from the drug prescriptions of out and inpatients at Maharaj Nakhon Chiang Mai hospital in 2018. The machine learning algorithm was able to screen drug prescription events with a risk of HAD inappropriate use and identify over 98% of actual HAD mismatches in the test set and 99% in the evaluation set. This study demonstrates that machine learning plays an important role and has potential benefit to screen and reduce errors in HAD prescriptions.


Diagnostics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 33 ◽  
Author(s):  
Joshua Gawlitza ◽  
Timo Sturm ◽  
Kai Spohrer ◽  
Thomas Henzler ◽  
Ibrahim Akin ◽  
...  

Introduction: Quantitative computed tomography (qCT) is an emergent technique for diagnostics and research in patients with chronic obstructive pulmonary disease (COPD). qCT parameters demonstrate a correlation with pulmonary function tests and symptoms. However, qCT only provides anatomical, not functional, information. We evaluated five distinct, partial-machine learning-based mathematical models to predict lung function parameters from qCT values in comparison with pulmonary function tests. Methods: 75 patients with diagnosed COPD underwent body plethysmography and a dose-optimized qCT examination on a third-generation, dual-source CT with inspiration and expiration. Delta values (inspiration—expiration) were calculated afterwards. Four parameters were quantified: mean lung density, lung volume low-attenuated volume, and full width at half maximum. Five models were evaluated for best prediction: average prediction, median prediction, k-nearest neighbours (kNN), gradient boosting, and multilayer perceptron. Results: The lowest mean relative error (MRE) was calculated for the kNN model with 16%. Similar low MREs were found for polynomial regression as well as gradient boosting-based prediction. Other models led to higher MREs and thereby worse predictive performance. Beyond the sole MRE, distinct differences in prediction performance, dependent on the initial dataset (expiration, inspiration, delta), were found. Conclusion: Different, partially machine learning-based models allow the prediction of lung function values from static qCT parameters within a reasonable margin of error. Therefore, qCT parameters may contain more information than we currently utilize and can potentially augment standard functional lung testing.


Proceedings ◽  
2020 ◽  
Vol 59 (1) ◽  
pp. 2
Author(s):  
Benoit Figuet ◽  
Raphael Monstein ◽  
Michael Felux

In this paper, we present an aircraft localization solution developed in the context of the Aircraft Localization Competition and applied to the OpenSky Network real-world ADS-B data. The developed solution is based on a combination of machine learning and multilateration using data provided by time synchronized ground receivers. A gradient boosting regression technique is used to obtain an estimate of the geometric altitude of the aircraft, as well as a first guess of the 2D aircraft position. Then, a triplet-wise and an all-in-view multilateration technique are implemented to obtain an accurate estimate of the aircraft latitude and longitude. A sensitivity analysis of the accuracy as a function of the number of receivers is conducted and used to optimize the proposed solution. The obtained predictions have an accuracy below 25 m for the 2D root mean squared error and below 35 m for the geometric altitude.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3369
Author(s):  
Jiyeong Hong ◽  
Seoro Lee ◽  
Gwanjae Lee ◽  
Dongseok Yang ◽  
Joo Hyun Bae ◽  
...  

For effective water management in the downstream area of a dam, it is necessary to estimate the amount of discharge from the dam to quantify the flow downstream of the dam. In this study, a machine learning model was constructed to predict the amount of discharge from Soyang River Dam using precipitation and dam inflow/discharge data from 1980 to 2020. Decision tree, multilayer perceptron, random forest, gradient boosting, RNN-LSTM, and CNN-LSTM were used as algorithms. The RNN-LSTM model achieved a Nash–Sutcliffe efficiency (NSE) of 0.796, root-mean-squared error (RMSE) of 48.996 m3/s, mean absolute error (MAE) of 10.024 m3/s, R of 0.898, and R2 of 0.807, showing the best results in dam discharge prediction. The prediction of dam discharge using machine learning algorithms showed that it is possible to predict the amount of discharge, addressing limitations of physical models, such as the difficulty in applying human activity schedules and the need for various input data.


Author(s):  
Ahmed Hassan Mohammed Hassan ◽  
◽  
Arfan Ali Mohammed Qasem ◽  
Walaa Faisal Mohammed Abdalla ◽  
Omer H. Elhassan

Day by day, the accumulative incidence of COVID-19 is rapidly increasing. After the spread of the Corona epidemic and the death of more than a million people around the world countries, scientists and researchers have tended to conduct research and take advantage of modern technologies to learn machine to help the world to get rid of the Coronavirus (COVID-19) epidemic. To track and predict the disease Machine Learning (ML) can be deployed very effectively. ML techniques have been anticipated in areas that need to identify dangerous negative factors and define their priorities. The significance of a proposed system is to find the predict the number of people infected with COVID19 using ML. Four standard models anticipate COVID-19 prediction, which are Neural Network (NN), Support Vector Machines (SVM), Bayesian Network (BN) and Polynomial Regression (PR). The data utilized to test these models content of number of deaths, newly infected cases, and recoveries in the next 20 days. Five measures parameters were used to evaluate the performance of each model, namely root mean squared error (RMSE), mean squared error (MAE), mean absolute error (MSE), Explained Variance score and r2 score (R2). The significance and value of proposed system auspicious mechanism to anticipate these models for the current cenario of the COVID-19 epidemic. The results showed NN outperformed the other models, while in the available dataset the SVM performs poorly in all the prediction. Reference to our results showed that injuries will increase slightly in the coming days. Also, we find that the results give rise to hope due to the low death rate. For future perspective, case explanation and data amalgamation must be kept up persistently.


Sign in / Sign up

Export Citation Format

Share Document