scholarly journals Real-Time in situ Observations Reveal a Double Role for Ascorbic Acid in the Anisotropic Growth of Silver on Gold

Author(s):  
Kinanti Aliyah ◽  
Jieli Lyu ◽  
Claire Goldmann ◽  
Thomas Bizien ◽  
Cyrille Hamon ◽  
...  

Rational nanoparticle design is one of the main goals of materials science, but it can only be achieved via a thorough understanding of the growth process and of the respective roles of the molecular species involved. We demonstrate that a combination of complementary techniques can yield novel information with respect to their individual contributions. We monitored the growth of long aspect ratio silver rods from gold pentatwinned seeds by three in situ techniques (small-angle x-ray scattering, optical absorbance spectroscopy and liquid-cell transmission electron microscopy). Exploiting the difference in reaction speed between the bulk synthesis and the nanoparticle formation in the TEM cell, we show that the anisotropic growth is thermodynamically controlled (rather than kinetically) and that ascorbic acid, widely used for its mild reductive properties plays a shape-directing role, by stabilizing the {100} facets of the silver cubic lattice, in synergy with the halide ions. This approach can easily be applied to a wide variety of synthesis strategies.<br>

2019 ◽  
Author(s):  
Kinanti Aliyah ◽  
Jieli Lyu ◽  
Claire Goldmann ◽  
Thomas Bizien ◽  
Cyrille Hamon ◽  
...  

Rational nanoparticle design is one of the main goals of materials science, but it can only be achieved via a thorough understanding of the growth process and of the respective roles of the molecular species involved. We demonstrate that a combination of complementary techniques can yield novel information with respect to their individual contributions. We monitored the growth of long aspect ratio silver rods from gold pentatwinned seeds by three in situ techniques (small-angle x-ray scattering, optical absorbance spectroscopy and liquid-cell transmission electron microscopy). Exploiting the difference in reaction speed between the bulk synthesis and the nanoparticle formation in the TEM cell, we show that the anisotropic growth is thermodynamically controlled (rather than kinetically) and that ascorbic acid, widely used for its mild reductive properties plays a shape-directing role, by stabilizing the {100} facets of the silver cubic lattice, in synergy with the halide ions. This approach can easily be applied to a wide variety of synthesis strategies.<br>


Author(s):  
M.A. O’Keefe ◽  
J. Taylor ◽  
D. Owen ◽  
B. Crowley ◽  
K.H. Westmacott ◽  
...  

Remote on-line electron microscopy is rapidly becoming more available as improvements continue to be developed in the software and hardware of interfaces and networks. Scanning electron microscopes have been driven remotely across both wide and local area networks. Initial implementations with transmission electron microscopes have targeted unique facilities like an advanced analytical electron microscope, a biological 3-D IVEM and a HVEM capable of in situ materials science applications. As implementations of on-line transmission electron microscopy become more widespread, it is essential that suitable standards be developed and followed. Two such standards have been proposed for a high-level protocol language for on-line access, and we have proposed a rational graphical user interface. The user interface we present here is based on experience gained with a full-function materials science application providing users of the National Center for Electron Microscopy with remote on-line access to a 1.5MeV Kratos EM-1500 in situ high-voltage transmission electron microscope via existing wide area networks. We have developed and implemented, and are continuing to refine, a set of tools, protocols, and interfaces to run the Kratos EM-1500 on-line for collaborative research. Computer tools for capturing and manipulating real-time video signals are integrated into a standardized user interface that may be used for remote access to any transmission electron microscope equipped with a suitable control computer.


2020 ◽  
Vol 11 (8) ◽  
pp. 2830-2837
Author(s):  
Kinanti Aliyah ◽  
Jieli Lyu ◽  
Claire Goldmann ◽  
Thomas Bizien ◽  
Cyrille Hamon ◽  
...  

2009 ◽  
Vol 2009 ◽  
pp. 1-11 ◽  
Author(s):  
J. M. De Teresa ◽  
R. Córdoba ◽  
A. Fernández-Pacheco ◽  
O. Montero ◽  
P. Strichovanec ◽  
...  

We study the origin of the strong difference in the resistivity of focused-electron- and focused-Ga-ion-beam-induced deposition (FEBID and FIBID, resp.) of Pt performed in a dual beam equipment using(CH3)3Pt(CpCH3)as the precursor gas. We have performed in-situ and ex-situ resistance measurements in both types of nanodeposits, finding that the resistivity of Pt by FEBID is typically four orders of magnitude higher than Pt by FIBID. In the case of Pt by FEBID, the current-versus-voltage dependence is nonlinear and the resistance-versus-temperature behavior is strongly semiconducting, whereas Pt by FIBID shows linear current-versus-voltage dependence and only slight temperature dependence. The microstructure, as investigated by high-resolution transmission electron microscopy, consists in all cases of Pt single crystals with size about 3 nm embedded in an amorphous carbonaceous matrix. Due to the semiconducting character of the carbon matrix, which is the main component of the deposit, we propose that the transport results can be mapped onto those obtained in semiconducting materials with different degrees of doping. The different transport properties of Pt by FEBID and FIBID are attributed to the higher doping level in the case of FIBID, as given by composition measurements obtained with energy-dispersive X-ray microanalysis.


1997 ◽  
Vol 502 ◽  
Author(s):  
T. Ressler ◽  
Joe Wong ◽  
W. Metz

ABSTRACTIn addition to being an established technique for ex-situ structural studies, x-ray absorption spectroscopy (XAS) has recently been realized to be a powerful tool for in-situ time-resolved investigations in materials science. This paper describes two complementary techniques: quick-scanning EXAFS (QEXAFS) and energy-dispersive XAS (DXAS) which offer time resolution in the seconds and milliseconds range, respectively. Formation of a heterogeneous catalyst from a solid-state reaction of a precursor is presented as an example of a time-resolved XAS application.


Inorganics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 85
Author(s):  
Maryam Golozar ◽  
Raynald Gauvin ◽  
Karim Zaghib

This work summarizes the most commonly used in situ techniques for the study of Li-ion batteries from the micro to the atomic level. In situ analysis has attracted a great deal of interest owing to its ability to provide a wide range of information about the cycling behavior of batteries from the beginning until the end of cycling. The in situ techniques that are covered are: X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Scanning Transmission Electron Microscopy (STEM). An optimized setup is required to be able to use any of these in situ techniques in battery applications. Depending on the type of data required, the available setup, and the type of battery, more than one of these techniques might be needed. This study organizes these techniques from the micro to the atomic level, and shows the types of data that can be obtained using these techniques, their advantages and their challenges, and possible strategies for overcoming these challenges.


2021 ◽  
Author(s):  
Carina B. Maliakkal

Growing nanowires inside a transmission electron microscope (TEM) and observing the process in situ has contributed immensely to understanding nanowire growth mechanisms. Majority of such studies were on elemental semiconductors – either Si or Ge – both of which are indirect bandgap semiconductors. Several compound semiconductors on the other hand have a direct bandgap making them more efficient in several applications involving light absorption or emission. During compound nanowire growth using a metal catalyst, the difference in miscibility of the nanowire species inside the metal catalyst are different, making its growth dynamics different from elemental nanowires. Thus, studies specifically focusing on compound nanowires are necessary for understanding its growth dynamics. This chapter reviews the recent progresses in the understanding of compound semiconductor nanowire growth obtained using in situ TEM. The concentrations of the nanowire species in the catalyst was studied in situ. This concentration difference has been shown to enable independent control of layer nucleation and layer growth in nanowires. In situ TEM has also enabled better understanding of the formation of metastable crystal structures in nanowires.


Author(s):  
Marilyn A. Listvan

Domain growth and the motion of grain boundaries are important processes in materials science. The behavior of grain boundaries and other boundaries between different domains is tied to many material properties, such as conductivity. In dilute systems, one boundary of interest is the domain wall between the material and vacuum. Thermodynamically unstable systems will show domain, i.e. cluster growth. This cluster growth can be studied directly by high resolution scanning transmission electron microscopy (STEM).We have examined a system of gold clusters, prepared by in vacuo vapordeposition of gold on thin amorphous carbon substrates. A complete description of methods may be found in reference 1.By simultaneously depositing metal atoms with an easily removed hydrocarbon layer, we observed small clusters (figure la.) which grew in situ without further deposition under clean conditions at room temperature in the microscope column (figure lb.). The initial projected area distribution (seen in figure 2a.) showed a good fit to a Poisson distribution of areas.


Nanoscale ◽  
2017 ◽  
Vol 9 (34) ◽  
pp. 12479-12485
Author(s):  
Xing Huang ◽  
Travis Jones ◽  
Hua Fan ◽  
Marc-Georg Willinger

Void formation and anisotropic growth in ZnS ribbons have been studied by in situ transmission electron microscopy.


2010 ◽  
Vol 667-669 ◽  
pp. 635-639
Author(s):  
Wen Bo Du ◽  
Xu Dong Wang ◽  
Zhao Hui Wang ◽  
Shu Bo Li

The Mg-5Zn-2.5Er matrix composite reinforced with the in-situ synthesized Mg2Si second phase particles was fabricated via repeated plastic working (RPW) process. The microstructures and the nanocrystals in the composite have been investigated using transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HREM) and energy dispersive X-ray (EDX). Great deals of nanocrystals were found in the matrix, and they were around the in-situ synthesized Mg2Si. The HREM analysis showed that the size of nanocrystals was in the range of 5-10 nm, and the difference in their crystallographic orientation was bigger than 15°. It is suggested that the formation of nanocrystals in the matrix is attributed to the RPW deformation process and to the intensive stresse fields around the in-situ synthesized Mg2Si particles, which suppress the growth of nanocrystals by forming nonequilibrium grain boundaries containing disordered dislocation networks and junction disclinations.


Sign in / Sign up

Export Citation Format

Share Document