scholarly journals Reverse phase-UPLC method of analysis for simultaneous estimation of Levosalbutamol sulphate, Guaiphenesin and Ambroxol hydrochloride in pharmaceutical cough, cold liquid dosage forms

2019 ◽  
Vol 10 (2) ◽  
pp. 927-934
Author(s):  
Kiran Kumar A ◽  
Balakrishnan M ◽  
Chandrasekhar K B ◽  
Kiran Jyothi R

The three most drug combinations for cough, cold are widely used worldwide now a day. The purpose of the study was to build up an innovative RP-UPLC technique for simultaneous estimation of Levosalbutamol Sulphate (LEV), Guaiphenesin (GUA) and Ambroxol Hydrochloride (AMB) in liquid dosage forms. Chromatography was carried out on UHPLC (WATERS)_SYMMETRY® C18 4.6mm x 1000mm, 3.5µm, (Agilent - Zorbax Eclipse Plus C18 – Rapid Resolution) with an isocratic mobile phase with pH 3.0 composed of buffer, methanol and Acetonitrile (60:20:20) with a flow rate of 0.8mL/min. The detection was carried out with column temperature at 25°C using a UV detector at 276nm. Validation parameters like linearity, specificity, precision, accuracy, limit of detection (LOD), limit of quantification (LOQ), system suitability, Solutions stability and robustness were considered as affirmed in the ICH guidelines. Retention times for LEV, GUA & AMB were 1.07 min, 1.99 min & 3.55 min respectively. The assay of syrups with the relative standard deviation found to be less than 2%. The parameters values were found, and the method was found to be satisfactory. This validated UHPLC method is cost-effective, receptive and precise than other chromatographic methods.

Author(s):  
Prashansha Mullick ◽  
Sadhana P Mutalik ◽  
Aswathi R Hegde ◽  
Abhijeet Pandey ◽  
P C Jagadish ◽  
...  

Abstract A stability-indicating reverse phase high-performance liquid chromatography method was developed and validated for simultaneous quantification of apremilast (APL) and betamethasone dipropionate (BD) in bulk as well as drug loaded microsponges. Various mobile phase systems were screened to check the system suitability followed by force degradation analysis to determine APL and BD stability under varying stress conditions. A central composite design model was used to optimize the column temperature and flow rate using Design Expert® (9.0.1). One factor at a time approach with five independent factors were used to validate the robustness of the method. Finally, APL and BD were precisely and accurately quantified from drug loaded microsponges using the validated method. A favorable separation of APL and BD was obtained on a Phenomenex® Luna C18 column using a mixture of 50 mM phosphate buffer containing 0.1% triethylamine (pH 6.1) and acetonitrile (60:40%v/v) as mobile phase. Both the drugs were found to be stable when exposed to stressors such as heat-, light-, alkali-, acid- and peroxide-induced degradation. The calibration curves were found to be linear with appreciable limit of detection and limit of quantification. Recovery and percentage relative standard deviation of peak areas for APL and BD were found to be < 2.0% and 99–100% in bulk drug solution and <2.0% and 99–103% in microsponge formulation, respectively. Statistical analysis using analysis of variance indicated that the model was significant (P < 0.001). Hence, the developed method can be effectively used to quantify APL and BD, both in bulk as well as microsponge formulations.


Author(s):  
Alok Pratap Singh ◽  
Iti Chauhan ◽  
Snigdha Bhardwaj ◽  
Praveen Gaur ◽  
S Sadish Kumar ◽  
...  

Introduction: Azithro-mycin a semi-synthetic, azalide congener of erythro-mycin indicated in the treatment of respiratory tract infections. Various methods available for determination of Azithro-mycin, but HPLC are most versatile one. Objective: The present study is based on the development and validation of a rapid, simple high performance liquid chromatography (HPLC) method equipped with UV detector for quantitative analysis of Azithro-mycin (AZN) in suspension. Material and methods: The Method was performed by using Hypersil BDS-C18 (250 mm × 4.6 mm i.d.) column MS-II, with an isocratic mobile phase of methanol, acetonitrile and phosphate buffer pH 8 (60:30:10; v/v) with run time 15 minutes. The determinations were performed at a flow rate of 1.0ml/min, and UV detector set at 212 nm. Result and Discussion: The method was found to be specific with relative standard deviation (RSD) less than 2.09%. The method showed accuracy with RSD less than 1.34% and precision in repeatability with RSD less than 1.42%. The method was found to be linear over a wide range of concentration from 1.0 to 50.0 μg/mL (R2 = .995). Limit of detection and limit of quantification were found to be 14.40 ng/mL and 43.66 ng/mL respectively. Conclusion: It was advantageous to use UV detector over other methods employing electrochemical, photodiode array etc. as the detector, because of cheap and easy availability. The developed method fulfilled all validation parameters as per ICH and can be successfully applied to quantify percent drug content in marketed oral Azithro-mycin suspension.


Author(s):  
DEEPIKA SHARMA ◽  
KOMAL GUPTA ◽  
POOJA CHAWLA

Objective: The aim of the study is to develop and validate a high-performance liquid chromatographic method for the simultaneous determination of clotrimazole, miconazole nitrate, and tinidazole tablet dosage forms. Materials and Methods: A Waters C18 column (50 mm×4.6 mm, 5 μm) with mobile phase consisting of acetonitrile, methanol, and water 55:25:20 (v/v) (pH 2.5 adjusting with 0.5% orthophosphoric acid) was used. The flow rate was 1.0 ml/min, and effluents were monitored at 210 nm. Results: The retention time of miconazole nitrate, tinidazole, and clotrimazole tablets was found to be 2.9 min, 3.5 min, and 4.7 min, respectively. The method was validated according to the ICH guidelines for specificity, limit of detection, limit of quantification, precision, accuracy, linearity, ruggedness, and robustness. Conclusion: The method shows good reproducibility and recovery with % relative standard deviation <2. Hence, the proposed method was found to be simple, specific, precise, accurate, and linear. Hence, it can be applied for routine analysis of clotrimazole, miconazole nitrate, and tinidazole in pharmaceutical combined dosage forms.


2021 ◽  
Vol 08 ◽  
Author(s):  
Kumar Janakiraman ◽  
Venkateshwaran Krishnaswami ◽  
Vaidevi Sethuraman ◽  
Vijaya Rajendran ◽  
Ruckmani Kandasamy

Aim: To develop an RP-HPLC method for the simultaneous estimation of methotrexate (MTX) and minocycline (MNC). Background: Different HPLC methods were reported for the estimation of MTX/MNC individually, but there is no report for the simultaneous estimation of both MTX and MNC in a simple method. Objective: The objective of the developed method is to utilize the method for the estimation of MTX/MNC in different pharmaceutical formulations and in biological fluids. Methods: An HPLC method for the estimation of methotrexate (MTX) and minocycline (MNC) relevance to the evaluation of nanoparticulate formulations has been developed and validated. Chromatographic estimation was achieved using the mobile phase composition of sodium acetate buffer and acetonitrile (70:30% v/v) at pH 4.0 at a flow rate of 0.2 mL/min at 307 nm. Results: The calibration curve for MTX and MNC was found to be linear at nanogram (5 to 25 ng.mL-1) and microgram (5 to 25 μg.mL-1) levels at a correlation coefficient range of 0.98 to 0.99 for both MTX/MNC. The lower limit of detection and limit of quantification were found to be 0.026 ng.mL-1 and 0.079 ng.mL-1 for MTX and MNC, respectively. The percentage relative standard deviation for validation parameters of both drugs was found to be less than 6.5%. The amount of MTX and MNC present within the nanoparticles was found to be MTX (0.84 mg/mL) and MNC (0.61 mg/mL). The in vitro release showed an immediate release pattern for MTX (64.95±2.08%) and MNC (90.90±1.78%) within 12 h. Conclusion: The developed analytical method for the simultaneous estimation of MTX and MNC was found to be simple, affordable, dynamic, low cost, rapid and easy to perform with good repeatability. This method is also time consuming, since the peaks were obtained within a moderate analysis time.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (07) ◽  
pp. 59-65
Author(s):  
Vinita C. Patole ◽  
Shilpa P. Chaudhari ◽  

An attempt was made to develop a simple, selective, rapid and precise high-performance liquid chromatography (HPLC) method for simultaneous estimation of thymol and eugenol. Analysis was performed on a C18 column with the mobile phase consisting of solvent %A (water) and solvent %B (acetonitrile) with the following gradient: 0–1 min, 80 % A, 20 % B; 1–7 min, 40 % A and 60 % B; 7–12 min, 10 % A and 90 % B; and 12–15min, 80 % A and 20 % B at a flow rate of 0.6 mL/min. The compounds were well separated on a Thermo Scientific Hypersil BDS RP C18 column (4.6 mm × 150 mm, dp = 5 µm) and ultraviolet detection at 280 nm. The retention times of eugenol and thymol were 10.5 min and 11.6 min, respectively. Validation of the proposed method was carried out according to the guidelines of the International Council on Harmonization (ICH). The linearity of the method is good for thymol and eugenol over the concentration range of 1–50 ppm, and the r 2 values were 0.9996 for both thymol and eugenol. The calculated limit of detection (LOD) value was 0.5ppm and the limit of quantification (LOQ) value was 1ppm for both the analytes. The intra and interday relative standard deviation (RSD) of the retention time and peak areas was less than 3 %.The established method was appropriate, and the two markers were well resolved, enabling efficient quantitative analysis of thymol and eugenol.


2021 ◽  
Vol 09 ◽  
Author(s):  
Ali Al-Kulabi ◽  
Louis Gooden ◽  
Ijeoma F. Uchegbu

Background: Mycophenolic acid (MPA), an immunosuppressive agent, is used orally to reduce corneal graft rejection. However its oral use is associated with gastrointestinal side effects. Objectives: To prepare MPA nanoparticle eye drops and a validated analytical method. Methods: Aqueous MPA eye drops were prepared by nanoencapsulation of MPA using Nanomerics MET (N-palamitoylN-monomethyl-N,N-dimethyl-N,N,N-trimethyl-6-O-glycolchitosan) at a MET, MPA ratio of 7.5: 1 g g-1 in the presence of glycerol (2.75% w/w). A validated MPA in-formulation drug substance assay was then developed. Results: MET-MPA formulations were prepared as well as a validated assay. Assay validation parameters for the analysis of MPA in the formulation were satisfactory [Plate count = 16458, Capacity Factor = 2.4, Tailing Factor = 1.02, linearity = 0.999 (0.016 – 0.5 mg mL-1 ), limit of detection = 0.056 mg mL-1 , limit of quantification = 0.17 mg mL-1 , accuracy = 98%, intraday and interday relative standard deviation = 0.45% and 4% respectively]. The candidate formulation (z - average mean = 66 ± 0.4 nm, polydispersity index = 0.12 ± 0.012, drug content = 1.14 ± 0.003 mg mL-1 , zeta potential = +8.5 ± 1.4 mV, pH = 7.4 ± 0.02, osmolarity = 309 ± 1.5 mOSm L-1 , viscosity = 1.04 ± 0.001 mPa.s) was then found to be stable for 14 days with respect to drug content at refrigeration, room and accelerated (40C )temperature and. All other formulation parameters were within the ocular comfort range. Conclusions: A validated assay (ICH and US FDA guidelines) for new MPA nanoparticle eye drops has been developed.


2009 ◽  
Vol 92 (3) ◽  
pp. 757-764 ◽  
Author(s):  
Ellen Figueiredo Freire ◽  
Keyller Bastos Borges ◽  
Hélio Tanimoto ◽  
Raquel Tassara Nogueira ◽  
Lucimara Cristiane Toso Bertolini ◽  
...  

Abstract A simple method was optimized and validated for determination of ractopamine hydrochloride (RAC) in raw material and feed additives by HPLC for use in quality control in veterinary industries. The best-optimized conditions were a C8 column (250 4.6 mm id, 5.0 m particle size) at room temperature with acetonitrile100 mM sodium acetate buffer (pH 5.0; 75 + 25, v/v) mobile phase at a flow rate of 1.0 mL/min and UV detection at 275 nm. With these conditions, the retention time of RAC was around 5.2 min, and standard curves were linear in the concentration range of 160240 g/mL (correlation coefficient 0.999). Validation parameters, such as selectivity, linearity, limit of detection (ranged from 1.60 to 2.05 g/mL), limit of quantification (ranged from 4.26 to 6.84 g/mL), precision (relative standard deviation 1.87), accuracy (ranged from 96.97 to 100.54), and robustness, gave results within acceptable ranges. Therefore, the developed method can be successfully applied for the routine quality control analysis of raw material and feed additives.


2012 ◽  
Vol 9 (3) ◽  
pp. 1449-1456
Author(s):  
B. V. Suma ◽  
K. Kannan ◽  
V. Madhavan ◽  
Chandini R. Nayar

A new simple, specific, precise and accurate revere phase liquid chromatography method has been developed for estimation of atorvastatin calcium (AST) and ASPIRIN (ASP) simultaneously in a combined capsule dosage forms. The chromatographic separation was achieved on a 5 – micron C 18 column (250x 4.6mm) using a mobile phase consisting of a mixture of Acetonitrile: Ammonium Acetate buffer 0.02M (68:32) pH 4.5. The flow rate was maintained at 0.8 ml/min. The detection of the constituents was done using UV detector at 245 nm for AST and ASP. The retention time of AST and ASP were found be 4.5915 ± 0.0031 min and 3.282 ±0.0024 min respectively. The developed method was validated for accuracy, linearity, precision, limit of detection (LOD) and limit of quantification (LOQ) and robustness as per the ICH guidelines.


2019 ◽  
Vol 16 (1) ◽  
pp. 100-109
Author(s):  
Ibrahim Aljuffali ◽  
Fahad Almarri ◽  
A. F. M. Motiur Rahman ◽  
Fars Kaed Alanazi ◽  
Musaed Alkholief ◽  
...  

Background: The purpose of the current study was to develop a selective, precise, fast economical and advanced reverse phase ultra-high-performance liquid chromatography (UHPLC UV) method and validate it for the simultaneous estimation of cholecalciferol and its analogue 25- hydroxycholecalciferol in lipid-based self-nano emulsifying formulation (SNEDDS). Methods: The chromatographic separation was simply performed on a Dionex® UHPLC systems (Ultimate 3000, Thermo scientific) by using HSS C18 (2.1x50 mm, 1.8 µm) analytical column. The elution was carried out isocratically with the mobile phase consisting of acetonitrile and methanol in the ratio of 50:50 %v/v with a flow rate of 0.4 ml/min, followed by the UV detection at 265 nm. The injection volume was 1µl and the column temperature was maintained at 45°C. FDA regulatory guidelines were used to develop and validate the method. Results: The current developed UHPLC-UV method was found to be rapid (run time 2 min), and selective with the high resolution of cholecalciferol and 25-hydroxycholecalciferol (RT=0.530 min & 1.360 min) from different lipid matrices. The method was highly sensitive (Limit of Detection and Lower Limit of Quantification were 0.13 ppm & 0.51ppm, and 0.15 ppm & 0.54 ppm, respectively). The linearity, accuracy and precision were determined as suitable over the concentration range of 0.5-50.0 ppm for both the analytes. Conclusion: The proposed UHPLC-UV method can be used for the determination of cholecalciferol and 25-hydroxycholecalciferol in SNEDDS and marketed Vi-De 3® as pure forms (intact) with no interference of excipients or drug-related substances.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Uma Sai Teja Yarra ◽  
Sowjanya Gummadi

Abstract Background Bempedoic acid and Ezetimibe acid are used in combination for treatment of hypercholesterolemia. The current work was undertaken to develop a simple and rapid stability-indicating RP-UPLC method for the simultaneous estimation of Bempedoic acid and Ezetimibe in tablets as no such method was available. The chromatographic separation was performed with Waters Acquity C18 [50 × 2.1 mm, 1.7 μ] column using methanol: acetonitrile: water [50: 30: 20, by volume] as mobile phase pumped at a flow rate 0.5 mL/min. The separated analytes were detected at 260 nm using UV detector. Results The separation of Bempedoic acid (BA) and Ezetimibe (EZ) was done at a retention time of 1.827 min. and 3.577 min. respectively. The validation and stability studies of the present method were carried out according to the ICH guidelines. The linearity of the proposed method was in the range of 30–130 μg/mL and 5–50 μg/mL for Bempedoic acid and Ezetimibe respectively. Limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.1216 μg/mL and 0.3685 μg/mL for Bempedoic acid and 0.1189 μg/mL and 0.3602 μg/mL for Ezetimibe respectively. The recovery of the method was found to be in the range of 99.89—100.31% for Bempedoic acid and 98.14—99.94% for Ezetimibe while the % RSD for both drugs in the precision and robustness study was less than 2.0. The drugs did not show any major degradants in the exposed conditions. Conclusion The developed method was found to be simple, sensitive, accurate, precise, robust, rapid and yet stability indicating. The method can be adopted for simultaneous estimation of Bempedoic acid and Ezetimibe in the pharmaceutical formulation.


Sign in / Sign up

Export Citation Format

Share Document