scholarly journals Development and Characterization of Ofloxacin & Prednisolone Loaded Nanostructured Lipid Carriers (Nlc) for Topical Route

2019 ◽  
Vol 4 (1) ◽  

Aim: The present study was designed to develop and characterize nanostructured lipid carriers (NLC) of Ofloxacin and Prednisolone for topical use in case of infections associated with inflammation. Materials and Methods: Ofloxacin was obtained as gift sample from Mankind Pharma Ltd, VillKyarta, P.O. Misserwal, Poonta Sahib, Sir Mour. H.P. Whereas Prednisolone was purchased from Yarrow chem., Mumbai. It was evaluated for its pre-formulation studies (organoleptic properties, melting point, solubility, compatibility, max. wavelength of absorption). NLCs were prepared through melt-emulsification followed by ultra-sonication technique. Further optimized batch of NLCs was incorporated into Gel. Formulated NLCs were evaluated in terms of morphological characteristics, particle size (Polydispersity Index), drug content, In-vitro drug release (using egg membrane), drug release kinetics (Ritger-Peppas diffusion method). Finally, gel containing NLCs was studied by physical characteristics, pH, viscosity, spreadability, drug content, In-vitro drug release and its kinetics. Results and Discussion: In pre-formulation study, drugs were found having the similar properties as described in Indian Pharmacopoeia (IP) and United States Pharmacopoeia (USP). SEM photomicrograph revealed that NLCs were spherical with more or less smooth surface; particle size 512.3-1703 nm and PDI- 0.399-0.742 (ofloxacin) and particle size 539.3-1736.7 nm and PDI- 0.335 - 0.711 (prednisolone);drug content was found in range of 56.7 - 75.6% for ofloxacin and 65.9 – 81.8% for prednisolone. NLC1 demonstrated maximum release rate with 83.37±1.70% and NLC8 73.96±0.53%.NLC6 was best fitted in Korsmeyer - peppas model as the regression coefficients were 0.960, 0.964, 0.977, 0.950, 0.980 & 0.987 respectively and prednisolone NLC 9 (0.953) and they were close to 1. Conclusion: In conclusion, the prepared NLCs had prolonged release effects with good potential for topical delivery of NLC based gel formulation of ofloxacin& prednisolone.

INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (02) ◽  
pp. 27-35
Author(s):  
A. A Bakliwal ◽  
◽  
D. S. Jat ◽  
S. G. Talele ◽  
A. G. Jadhav

The objective of the present study was to produce extended release nateglinide nanosponges for oral delivery. Preparation of nanosponges leads to solubility enhancement. Nateglinide is a BCS Class II drug, having low solubility. So, to increase the solubility of nateglinide it is formulated into nanosponges. Nanosponges using ethyl cellulose as a polymer and dichloromethane as a cross-linker were prepared successfully by ultra-sound assisted synthesis method. The effects of different drug: placebo ratios on the physical characteristics of the nanosponges as well as the drug content and in vitro drug release of the nanosponges were investigated. Particle size analysis and surface morphology of nanosponges were performed. The scanning and transmission electron microscopy of nanosponges showed that they were spongy in nature. The particle size was found to be in the range 46.37 - 97.23 nm out of which particle size of the optimized formulation was 51.79 nm and the drug content was found to 79.43 %. The optimized nanosponge formulations were selected for preparing nanosponge tablets for extended drug delivery by oral route. These tablets were prepared using xanthan gum and PVP K-30 and were evaluated by pre-compression and post-compression parameters. The nateglinide nanosponges tablet formulation were studied for different parameters using Design Expert Software. All formulations were evaluated for in vitro drug release analyzed according to various release kinetic models and it was found that it follows zero order release kinetics.


2018 ◽  
Vol 10 (4) ◽  
pp. 82
Author(s):  
Koyel Kar ◽  
R. N. Pal ◽  
Gouranga Nandi

Objective: The objective of the present work was to conduct accelerated stability study as per international council for harmonisation (ICH) guidelines and to establish shelf life of controlled release dosage form of ropinirole hydrochloride and pramipexole dihydrochloride microspheres for a period of 6 mo.Methods: Most optimized batch of ropinirole hydrochloride and pramipexole dihydrochloride (F12 and M12 respectively) were selected and subjected to exhaustive stability testing by keeping the sample in stability oven for a period of 3 and 6 mo. Various parameters like surface morphology, particle size, drug content, in vitro drug release and shelf life were evaluated at 3 and 6 mo period. The surface morphology of the formulated microspheres was determined by scanning electron microscopy (SEM). The particle size of the microspheres was estimated by optical microscopy method. The drug content was assayed by the help of ultra-violet spectrophotometer (UV). The in vitro drug release was performed by using Paddle II type dissolution apparatus and the filtrate was analyzed by UV spectrophotometer. The shelf life of the optimized microspheres was calculated by using the rate constant value of the zero-order reaction.Results: A minor change was recorded in average particle size of F12 and M12 microspheres after storage for 6 mo. For F12 and M12, initially the particle size was 130.00 µm and 128.92 µm respectively and after 6 mo it was found to be 130.92 µm and 128.99 µm respectively. There was no change in surface morphology of F12 and M12 microspheres after 6 mo of storage. The shape of microspheres remained spherical and smooth after 6 mo. An insignificant difference of drug content was recorded after 6 mo compared to the freshly prepared formulation. For F12 and M12, 94.50% and 93.77% of the drug was present initially and after 6 mo 94.45% and 93.72% of the drug was recorded. In vitro drug release was recorded after 6 mo for F12 and M12. Initially, 97.99% and 97.69% of the drug was released till 14th hour respectively for F12 and M12. After 6 mo, 98.23% and 97.99% of the drug was released respectively. The percentage residual drug content revealed that the degradation of microspheres was low. Considering the initial percentage residual drug content as 100%, 99.94% of the drug was recorded for both F12 and M12. The shelf life for F12 and M12 was found to be 10 y 52 d and 10 y 70 d respectively which were determined by the zero-order kinetic equation.Conclusion: A more or less similar surface morphology, particle size, drug content and percent of drug release before and after stability study confirmed the stability of F12 and M12 microspheres after storage for 6 mo and prove the efficacy of the microspheres in the site-specific delivery of drugs in Parkinson’s disease.


Author(s):  
KULKARNI AS ◽  
BHUJBAL SS

Objective: The objective of the present study was to formulate, evaluate alginate microspheres of curcumin, and to investigate the inhibitory effect on glycosylated hemoglobin. Methods: All formulations were prepared by an ionotropic gelation technique using sodium alginate as a polymer and calcium chloride as a crosslinker in varying concentrations. The formulation batches (F1–F6) were evaluated for physical properties such as compatibility studies, percentage entrapment efficiency (%EE), microsphere yield, particle size, and polydispersity index. In vitro, drug release was studied and surface morphology was characterized by scanning electron microscopy. Results: The microspheres showed %EE, microsphere yield, particle size in the ranges of 44.86%–84.24%, 43.05%–81.4%, and 352–559 μm, respectively. In vitro, drug release and release kinetics showed that the developed curcumin microspheres system is a promising delivery system for controlled drug release. Scanning electron micrographs indicate porous and rough surface. The inhibitory properties of curcumin and microspheres (F4) on glycosylation formation were investigated in hemoglobin using quercetin as standard. The decreased in hemoglobin concentration after incubation of hemoglobin with a graded concentration of glucose over a specified time was used as an index for in vitro human hemoglobin glycosylation assay. Glycosylation inhibition was about 75% for standard quercetin, 60% for curcumin microspheres, and 38.74% for curcumin suspension occurred after 72 h. Conclusion: From these results, it can be concluded that curcumin in microsphere formulation has better therapeutic potential and could prove to be useful in the development of antidiabetic formulation.


Author(s):  
Pooja Shettigar ◽  
Marina Koland ◽  
S. M. Sindhoor ◽  
Ananth Prabhu

Background: Clarithromycin is a macrolide antibiotic used in acne treatment, but it has poor solubility, which decreases its permeability through lipid barriers such as skin. Nanostructured lipid carriers can enhance the permeability of clarithromycin through the skin, thus improving its potential for controlling acne. Aim: To formulate and evaluate Nanostructured lipid carriers of clarithromycin for topical delivery in acne treatment Methods: Nanostructured lipid carriers were prepared by emulsification and ultrasonication methods using lipids such as glycerol monostearate and oleic with poloxamer 188 as stabilizer. These nano-carriers were optimized with the help of the Quality by Design (QbD) approach employing Design-Expert® software. The nanoparticles were characterized for particle size analysis, zeta potential, drug-excipient compatibility, entrapment efficiency, and surface morphology by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The nano-carriers were also investigated for in vitro drug release and ex vivo permeation through excised goat skin. The optimized formulation was incorporated into topical carbopol gel base, formulated and examined for pH, viscosity, spreadability, in vitro drug release, ex vivo permeation, and stability under accelerated conditions. Results: The average particle size of the optimized nanoparticles was 164.8 nm, and zeta potential was -39.2 mV. FTIR studies showed that drug and lipids are compatible with each other. The morphology study by SEM and TEM showed spherical shaped particles. The entrapment efficiency of the optimized formulation was found to be 88.16%. In vitro drug release studies indicated sustained release from the formulation due to diffusion through the lipid matrix of the particles. The ex vivo permeation study using goat skin produced greater permeation from the NLC gel (89.5%) than marketed gel (65%) due to the lipid solubility of the nanoparticles in the skin. The formulation was stable under accelerated conditions. Conclusion: The optimized formulation can be considered as promising nano-carriers suitable for the sustained release of clarithromycin into the skin for effective control of acne.


2017 ◽  
Vol 9 (2) ◽  
pp. 1 ◽  
Author(s):  
Ajit Kulkarni ◽  
Trushali Mandhare ◽  
Nagesh Aloorkar

Objective: To explore a novel natural polymer, pullulan for controlling the release of fenoverine from matrix tablets and to elucidate the release kinetics of fenoverine from pullulan and HPMC matrices.Methods: In this study we formulated monolithic matrix tablets containing of fenoverine as controlled-release tablets by direct compression using pullulan, HPMC (Hydroxypropyl methyl cellulose) K4M and HPMC K100M polymers and evaluated for hardness, thickness, friability, weight variation drug content, in vitro drug release characteristics and FTIR (Fourier transform infrared spectroscopy) and DSC (Differential scanning calorimetry) study.Results: All the formulations showed compliance with pharmacopoeial standards. FTIR and DSC study indicated the absence of interaction between fenoverine and excipients. The formulation was optimized on the basis of acceptable tablet properties and in vitro drug release. The results of dissolution studies indicated that the formulation F5 [drug to polymer 1: 0.35] exhibited highest % cumulative drug release of 96.82±0.75 % at the end of 12 h. Optimised batch F5 showed super case II transport mechanism and followed zero order release kinetics. Short-term stability studies of the optimized formulation indicated that there were no significant changes observed in hardness, drug content and in vitro dissolution studies at the end of three months period. Similarity factor f2 was found to be 89, which indicated similar dissolution profiles before and after stability study.Conclusion: Based on above results we conclude that pullulan can be used as a polymer for retarding the release of drug from matrix formulations.Keywords: Pullulan, Fenoverine, Hydroxypropyl methyl cellulose, Controlled release, In vitro


Author(s):  
Charanteja Reddy , Y

Objective: The main objective of the study was to formulate and evaluate the chitosan nanoparticles to improve the therapeutic efficacy of itraconazole by loading in nanoparticle drug delivery system. Designing the formulation of the drug itraconazole prolongs the therapeutic concentration of the drug in the blood and which will lower the frequency of dosing and also improves the efficacy of the drug. Methods: Itraconazole nanoparticles are prepared by ionic gelation method; here, chitosan is used as polymer. The formulated nanoparticles are evaluated for external morphological studies by scanning electron microscope (SEM), drug content, in vitro drug release studies, as well as infrared (IR) spectral analysis. Results: The Fourier transform IR spectra show that there was no interaction between drug and polymers; hence, they are compatible. Percentage entrapment efficiency, drug content, and percentage yield were higher for F3 formulation. The particle size analysis shows that every particle in the formulations gave the range of 148–227 nm, respectively; increasing in the particle size observed with varying concentration of polymer. SEM analysis of the nanoparticles shows that all the formulations were spherical and smooth with ideal surface morphology. As the concentration of polymer, the drug release decreased proportionally. The stability studies were carried out on the optimized formulation for 2 months at 30±2°C and 60±5% RH and 40±2°C and 75±5% RH; finally, it was observed that there was no change in drug content and in vitro drug release profile even after storage at 30±2°C and 60±5% RH and 40±2°C and 75±5% RH for 2 months. Conclusion: Itraconazole is one among the most widely used antifungal drugs. Designing the formulation of drug itraconazole prolongs therapeutic drug concentration in the blood and decreases dosage frequency and also enhances the efficacy of drug.


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (11) ◽  
pp. 17-23
Author(s):  
K Prakash ◽  
◽  
Y Phalguna ◽  
D. H. Narayana

The present study was aimed to develop and evaluate polycaprolactone–chitosan nanospheres of doxorubicin hydrochloride (DXO) in different drug to polymer ratios using double-emulsion solvent evaporation and solvent diffusion methods. FTIR studies showed that there was no chemical interaction between the drug and polymers. Scanning electron microscopy showed the nanospheres having a discrete spherical structure without aggregation. Prepared nanospheres were characterized for particle size, zeta potential, entrapment efficiency and in-vitro drug release kinetics. Nanospheres showed the particle size of 700±105to770±115 nm with an entrapment efficiency of 66.23±0.11% to 93.62±0.17%. The DXO content was found 76±0.12% to 91±0.36% in several batches. In-vitro drug release studies were performed using the dialysis membrane method. All the drug loaded batches were rendered sustained release over a period of 24 h.


2016 ◽  
Vol 15 (1) ◽  
pp. 47-55
Author(s):  
Md Ataur Rahman ◽  
Nusrat Ahmed ◽  
Ikramul Hasan ◽  
Md Selim Reza

In the present study naproxen loaded microspheres were prepared by emulsification solvent evaporation method in order to achieve targeted drug delivery. Eudragit L 100 and Eudragit S 100 were used as the rate retardant polymers in the preparations. Thirteen formulations (F1-F13) were prepared using 22 factorial design by changing the concentration of these two polymers. All the formulations were evaluated for product yield, drug content, entrapment efficiency, particle size and drug release profiles. Highest drug content and entrapment efficiency were found to be 30.17% (F4) and 91.86% (F8) respectively. The particle size was found to be 159.26-234.70 ?m for all formulations. In-vitro drug release studies were performed using USP type II (Paddle) apparatus for 8 hrs in pH 7.4 phosphate buffer. The maximum drug release after 8 hrs was found to be 60.19% for batch F4. The release kinetics of all formulations were evaluated by using zero order, first order, Higuchi, Korsmeyer-Peppas, Kopcha and Hixson Crowell model. Almost all formulations fitted best with the Kopcha kinetic model. The SEM study indicated the spherical structure of the microspheres having rough surfaces.Dhaka Univ. J. Pharm. Sci. 15(1): 47-55, 2016 (June)


Author(s):  
RAJASHRI B. AMBIKAR ◽  
ASHOK V. BHOSALE

Objective: Purpose of the study to design and formulate Diclofenac sodium (DIC) microsponges. Methods: With varied polymer: drug ratio DIC loaded microsponges were prepared with Eudragit RS100 polymer by quasi solvent diffusion method. Microsponges evaluated for particle size, entrapment efficiency, drug content, in vitro drug release, Fourier Transform Infrared Spectroscopy (FTIR), Differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM). DIC loaded microsponges incorporated into ocular in situ gel to attained controlled release by microsponge and improved residence time by gelling system. Ocular in situ gel evaluated for pH, drug content determination, gelling capacity, in vitro drug release and sterility study. Results: DSER4 microsponge formulation having polymer to drug ratio 1:7 showed satisfactory production yield (68.13%), entrapment efficiency (62.86%), drug content (80.73%), requisite particle size (less than 10 µm) (7.52 µm) and in vitro release 87.94% after 6 h. Selected DSER4 formulation was incorporate into in situ gel. Carbopol 940 forms stiff gel at higher pH so used as a gelling agent, whereas Hydroxypropyl Methylcellulose E4M was used as a viscosity-enhancing agent for the formulation of in situ gel in varied compositions. In situ gel formulation IG4 showed sustained release of 76.92% till the end of 8 h and satisfactory gelling capacity so IG4 further evaluated for sterility test. Rheological studies reveal the sol-gel transition of in situ gel occur at the physiological condition to form stiff gel. Conclusion: Prepared in situ gel formulations showed sustained drug release for a period of 8 h, which is satisfactory for management of ocular pain.


2020 ◽  
Vol 15 (1) ◽  
pp. 41-67
Author(s):  
Shreya Kaul ◽  
Neha Jain ◽  
Jaya Pandey ◽  
Upendra Nagaich

Introduction: The main purpose of the research was to develop, optimize and characterize tobramycin sulphate loaded chitosan nanoparticles based gel in order to ameliorate its therapeutic efficacy, precorneal residence time, stability, targeting and to provide controlled release of the drug. Methods: Box-Behnken design was used to optimize formulation by 3-factors (chitosan, STPP and tween 80) and 3-levels. Developed formulation was subjected for characterizations such as shape and surface morphology, zeta potential, particle size, in vitro drug release studies, entrapment efficiency of drug, visual inspection, pH, viscosity, spreadability, drug content, ex vivo transcorneal permeation studies, ocular tolerance test, antimicrobial studies, isotonicity evaluation and histopathology studies. Results: Based on the evaluation parameters, the optimized formulation showed a particle size of 43.85 ± 0.86 nm and entrapment efficiency 91.56% ± 1.04, PDI 0.254. Cumulative in vitro drug release was up to 92.21% ± 1.71 for 12 hours and drug content was found between 95.36% ± 1.25 to 98.8% ± 1.34. TEM analysis unfolded spherical shape of nanoparticles. TS loaded nanoparticulate gel exhibited significantly higher transcorneal permeation as well as bioadhesion when compared with marketed formulation. Ocular tolerance was evaluated by HET-CAM test and formulation was non-irritant and well-tolerated. Histopathology studies revealed that there was no evidence of damage to the normal structure of the goat cornea. As per ICH guidelines, stability studies were conducted and were subjected for 6 months. Conclusion: Results revealed that the developed formulation could be an ideal substitute for conventional eye drops for the treatment of bacterial keratitis.


Sign in / Sign up

Export Citation Format

Share Document