scholarly journals CHEMICAL MODIFICATION, CHARACTERIZATION AND EVALUATION OF MUCOADHESIVE POTENTIALITY OF ASSAM BORA RICE STARCH

Author(s):  
Abdul Baquee Ahmed ◽  
Iman Bhaduri

Objective: The objective of the present study was to chemical modification, characterization and evaluation of mucoadhesive potentiality of Assam bora rice starch as potential excipients in the sustained release drug delivery system. Methods: The starch was isolated from Assam bora rice and esterified using thioglycolic acid and characterized by Fourier transform infrared spectroscopy (FT-IR), Differential scanning calorimetry (DSC) and Nuclear magnetic resonance (NMR). The 10% w/v gel formulation based on modified bora rice starch loaded with irinotecan (0.6%) was prepared and evaluated for various rheological properties, ex-vivo mucoadhesion using goat intestine and in vitro drug release study in phosphate buffer pH 6.8.Results: The chemical modification was confirmed by FT-IR and NMR studies with the presence of the peak at 2626.74 cm-1 and a singlet at 2.51 respectively due to–SH group. Ex-vivo mucoadhesion studies showed 6.6 fold increases in mucoadhesion of the modified starch with compared to native starch (46.3±6.79g for native starch; 308.7±95.31g for modified starch). In vitro study showed 89.12±0.84 % of drug release after 6 h in phosphate buffer pH 6.8 and the release kinetics followed Non-Fickian diffusion.Conclusion: The modified Assam bora rice starch enhanced a mucoadhesive property of the native starch and thus, can be explored in future as a potential excipient for the sustained release mucoadhesive drug delivery system.

2020 ◽  
Vol 17 (3) ◽  
pp. 246-256
Author(s):  
Kriti Soni ◽  
Ali Mujtaba ◽  
Md. Habban Akhter ◽  
Kanchan Kohli

Aim: The intention of this investigation was to develop Pemetrexed Diacid (PTX)-loaded gelatine-cloisite 30B (MMT) nanocomposite for the potential oral delivery of PTX and the in vitro, and ex vivo assessment. Background: Gelatin/Cloisite 30 B (MMT) nanocomposites were prepared by blending gelatin with MMT in aqueous solution. Methods: PTX was incorporated into the nanocomposite preparation. The nanocomposites were investigated by Fourier Transmission Infra Red Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Scanning Electron Microscope (SEM) X-Ray Diffraction (XRD) and Confocal Laser Microscopy (CLSM). FT-IR of nanocomposite showed the disappearance of all major peaks which corroborated the formation of nanocomposites. The nanocomposites were found to have a particle size of 121.9 ± 1.85 nm and zeta potential -12.1 ± 0.63 mV. DSC thermogram of drug loaded nanocomposites indicated peak at 117.165 oC and 205.816 oC, which clearly revealed that the drug has been incorporated into the nanocomposite because of cross-linking of cloisite 30 B and gelatin in the presence of glutaraldehyde. Results: SEM images of gelatin show a network like structure which disappears in the nanocomposite. The kinetics of the drug release was studied in order to ascertain the type of release mechanism. The drug release from nanocomposites was in a controlled manner, followed by first-order kinetics and the drug release mechanism was found to be of Fickian type. Conclusion: Ex vivo gut permeation studies revealed 4 times enhancement in the permeation of drug present in the nanocomposite as compared to plain drug solution and were further affirmed by CLSM. Thus, gelatin/(MMT) nanocomposite could be promising for the oral delivery of PTX in cancer therapy and future prospects for the industrial pharmacy.


2019 ◽  
Vol 10 (4) ◽  
pp. 2765-2776
Author(s):  
Naresh Kshirasagar ◽  
Goverdhan Puchchakayala ◽  
Balamurgan K

The new investigation in this present work is to develop microsponges constructed novel drug delivery system for sustained action of Flurbiprofen. Quai-emulsion solvent diffusion method was engaged using Ethyl cellulose and Eudragit RS100 with drug: polymer ratio for development of microsponges. For optimization purposes, several factors are considered in the investigation. Several evaluation studies for the formed microsponges were carried out FT-IR, SEM, DSC, X-RD, particle size analysis, morphology, drug loading and In vitro drug release studies were carried out. Finally, it was concluded that there is no drug-polymer interaction as per DSC & FT-IR. Encapsulation efficiency, particle size and drug content showed a higher impact on alteration of drug-polymer ratio. SEM studies showed that morphological microsponges are spherical and porous in nature and with the mean particle size of 38.86 μm. The gel loaded with microsponges, were followed by In vitro and Ex vivo drug release studies by modified Franz diffusion cell. Skin delivery of optimized formulation enhanced the drug residence time and maintained therapeutic concentration for an extended period of time, which is possible to show sustained action of the drug.


Author(s):  
Anupam K Sachan ◽  
Saurabh Singh ◽  
Kiran Kumari ◽  
Pratibha Devi

Microspheres carrier system made from natural or synthetic polymers used in sustained release drug delivery system. The present study involves formulation and evaluation of floating microspheres of Curcumin for improving the drug bioavailability by prolongation gastric residence time. Curcumin, natural hypoglycemic agent is a lipophilic drug, absorbed poorly from the stomach, quickly eliminated and having short half-life so suitable to formulate floating drug delivery system for sustained release. Floating microspheres of curcumin were formulated by solvent evaporation technique using ethanol and dichloromethane (1:1) as organic solvent and incorporating various synthetic polymers as coating polymer, sustain release polymers and floating agent. The final formulation were evaluated various parameters such as compatibility studies, micrometric properties, In-vitro drug release and % buoyancy. FTIR studies showed that there were no interaction between drug and excipients. The surface morphology studies by SEM confirmed their spherical and smooth surface. The mean particles size were found to be 416-618µm, practical yield of microspheres was in the range of 60.21±0.052% - 80.87±0.043%, drug entrapment efficiency 47.4±0.065% - 77.9±0.036% and % buoyancy 62,24±0.161% - 88.63±0.413%. Result show that entraptmency increased as polymer (Eudragit RS100) conc. Increased. The drug release after 12 hrs. was 72.13% - 87.13% and it decrease as a polymer (HPMC, EC) concentration was decrease.


2013 ◽  
Vol 651 ◽  
pp. 227-231
Author(s):  
Qiang Song Wang ◽  
Yuan Lu Cui ◽  
Tian Jiao Dong

The purpose of the study was to prepare and evaluation chitosin-coated alginate/gelatin microspheres for sustained-release drug delivery system in vitro. The microspheres were prepared with an emulsification technique, characterized by scanning electron microscopy (SEM), Fourier transform infrared spectrophotometry (FT-IR), differential scanning calorimetry (DSC). The average particle size of the chitosan-coated alginate/gelatin microspheres was uniform. The results of FT-IR and DSC showed that the microspheres were formed by intermolecular cross-linkages between chitosan and gelatin. The results also implied that the microsphere were a practicable dosage form to increase drug loading ratio for the poorly water-soluble drugs by encapsulated with chitosan. In vitro release of the microsphere indicated that it had a satisfactory sustained-release behavior for the sustained-release drug delivery system.


Author(s):  
B. Valli Manalan ◽  
Nadendla Swathi ◽  
Narra Nandini ◽  
N. Hari Sree ◽  
Nilla Tejaswi Sai Maha Lakshmi ◽  
...  

The aim of the present study was to design an oral sustained release matrix tablet of highly water soluble biguanide anti diabetic drug. The matrix tablets are prepared by melt granulation method using HPMC K 200M as hydrophilic drug release retarding polymer, and stearic acid as melt able binder as well as hydrophobic carrier. The drug and excipients compatibility was studied by FT – IR. The formulated matrix tablets were characterized for physical parameters and in vitro dissolution profile. FT – IR spectra revealed the absence of drug excipients interaction. The physical parameters of the tablets were found within the limits. The drug release kinetics demonstrated that by increasing the concentration of hydrophilic polymer and hydrophobic carrier the drug release rate was retarded proportionally. Kinetic modelling of in vitro release profile revealing that the drug release from the matrix tablets following first order kinetics, and the drug release mechanism of optimized (F7) formula following non fickian transport mechanism. Accelerated stability studies were performed according to ICH guide lines. Temperature 40±20 c and relative humidity 75±5% RH to study physical and chemical changes of formulation. No physical or chemical changes were observed after t accelerated stability studies.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Chenna Madipalli Shalina ◽  
Vishnu Pulavarthy ◽  
Viswaja Medipally

The aim of this study was to explore the application of Gelucire 43/01 for the design of sustained release gastro retentive drug delivery system of Amlodipine besylate. Gelucire 43/01 has been used in floating sustained release formulations to prolong gastric residence time and increase its bioavailability. Gelucire 43/01 in combination with HPMC and Polyox was used as a release retarding polymer. HPMC of various viscosity grades HPMC K4M, HPMC K15M and HPMC K100M in combination of Gelucire were tested to obtain optimal total floating time as well as controlled drug release for prolonged period. Melt granulation technique has been used to prepare gastro retentive Amlodipine besylate formulations. All the formulations were evaluated in vitro for their floating ability and drug release. The floating times of all tablet formulations were greater than 12h. HPMC K4M in combination with Gelucire as polymeric matrix enhanced the drug release due to addition of hydrophilic polymer facilitated the swelling and erosion of the tablets. Incorporation of low viscosity polymer HPMC K100 M resulted in optimal floating as well as drug release for longer time. In vivo studies of optimized formulation show floating ability for 6 h in stomach. The results indicate that Gelucire 43/01 in combination with dissolution enhancers HPMC increase the permeability of the wax matrix, which provides improved dissolution thereby bioavailability of Amlodipine besylate and can be considered as a carrier for the development of sustained release floating drug delivery systems.  


Author(s):  
A. Bhavani ◽  
B. Hemalatha ◽  
K. Padmalatha

The present focus is on the development of sustained release formulations due to its inherent boons. There are several advantages of sustained release drug delivery over conventional dosage forms like improved patient compliance, reduction in fluctuation and increased safety margin of potent drug. The present study was aimed to prepare a sustained drug delivery system to design a controlled release oral dosage form of Cefpodoxime proxetil. The sustained release matrix tablets of Cefpodoxime proxetil were prepared by wet granulation and evaluated for different parameters such as weight variation, drug content, thickness, hardness, friability and In vitro release studies. The in vitro dissolution study was carried out for 12 hours using USP (Type- II) paddle apparatus in hydrochloride (0.1N) as dissolution media for first 2 hours and phosphate buffer (pH 6.8) for next 10 hours. Based on the in vitro dissolution data, formulation F8 was selected as the best formulation from Cefpodoxime proxetil formulations (F1 – F9) as the drug release was retarded up to 12 hours with 96.29 % and followed zero order release kinetics & drug release mechanism was diffusion.


Author(s):  
Ririyen Dessy N Siahaan ◽  
Hakim Bangun ◽  
Sumaiyah Sumaiyah

Objective: The objective of this study was to evaluate in vitro and in vivo of gastroretentive drug delivery system of cimetidine using hard alginate capsules.Methods: Drug release study was tested to various hard alginate capsules containing 200 mg cimetidine with paddle method dissolution apparatus in artificial gastric fluid pH 1.2. Concentrations of cimetidine were measured using ultraviolet spectrophotometer at 218.4 nm wavelength. The product that fulfilled the sustained release profile was evaluated for bioavailability using male rabbits at dose 9.3 mg/kg orally, and the antiulcer studies were evaluated by HCl-induced ulcer method at cimetidine dose 18 mg/kg once a day orally. Gastric lesions were evaluated by macroscopic and microscopic observations.Results: The results of drug release test showed that hard alginate capsule made from sodium alginate 500–600 cP gave sustained release profile of cimetidine for 12 h. In vivo bioavailability studies showed that cimetidine given with hard alginate capsules gave higher of Cmax, Tmax, and area under the curve of cimetidine compared to cimetidine that given with conventional hard gelatin capsules. The antiulcer studies showed that the healing effect of cimetidine that given with hard alginate capsules was faster than cimetidine given in suspension form. Cimetidine that given with hard alginate capsules macroscopically showed no gastric lesion and histopathologically also showed normal gastric mucosa of rats after 4 days treatment. However, cimetidine given in suspension form showed of 0.036±0.024 ulcer index and microscopically there was still erosion of gastric mucosa of rats after 4 days treatment.Conclusion: Floating gastroretentive of cimetidine using hard alginate capsules give a sustained release of cimetidine with better bioavailability and antiulcer effect of cimetidine.


2012 ◽  
Vol 62 (1) ◽  
pp. 71-82 ◽  
Author(s):  
Martins Emeje ◽  
Lucy John-Africa ◽  
Yetunde Isimi ◽  
Olobayo Kunle ◽  
Sabinus Ofoefule

Eudraginated polymer blends: A potential oral controlled drug delivery system for theophylline Sustained release (SR) dosage forms enable prolonged and continuous deposition of the drug in the gastrointestinal (GI) tract and improve the bioavailability of medications characterized by a narrow absorption window. In this study, a new strategy is proposed for the development of SR dosage forms for theophylline (TPH). Design of the delivery system was based on a sustained release formulation, with a modified coating technique and swelling features aimed to extend the release time of the drug. Different polymers, such as Carbopol 71G (CP), sodium carboxymethylcellulose (SCMC), ethylcellulose (EC) and their combinations were tried. Prepared matrix tablets were coated with a 5 % (m/m) dispersion of Eudragit (EUD) in order to get the desired sustained release profile over a period of 24 h. Various formulations were evaluated for micromeritic properties, drug concentration and in vitro drug release. It was found that the in vitro drug release rate decreased with increasing the amount of polymer. Coating with EUD resulted in a significant lag phase in the first two hours of dissolution in the acidic pH of simulated gastric fluid (SGF) due to decreased water uptake, and hence decreased driving force for drug release. Release became faster in the alkaline pH of simulated intestinal fluid (SIF) owing to increased solubility of both the coating and matrixing agents. The optimized formulation was subjected to in vivo studies in rabbits and the pharmacokinetic parameters of developed formulations were compared with the commercial (Asmanyl®) formulation. Asmanyl® tablets showed faster absorption (tmax 4.0 h) compared to the TPH formulation showing a tmax value of 8.0 h. The Cmax and AUC values of TPH formulation were significantly (p < 0.05) higher than those for Asmanyl®, revealing relative bioavailability of about 136.93 %. Our study demonstrated the potential usefulness of eudraginated polymers for the oral delivery of the sparingly soluble drug theophylline.


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3455
Author(s):  
Muhammad Shahid Latif ◽  
Abul Kalam Azad ◽  
Asif Nawaz ◽  
Sheikh Abdur Rashid ◽  
Md. Habibur Rahman ◽  
...  

Transdermal drug delivery systems (TDDSs) have become innovative, fascinating drug delivery methods intended for skin application to achieve systemic effects. TDDSs overcome the drawbacks associated with oral and parenteral routes of drug administration. The current investigation aimed to design, evaluate and optimize methotrexate (MTX)-loaded transdermal-type patches having ethyl cellulose (EC) and hydroxypropyl methyl cellulose (HPMC) at different concentrations for the local management of psoriasis. In vitro release and ex vivo permeation studies were carried out for the formulated patches. Various formulations (F1–F9) were developed using different concentrations of HPMC and EC. The F1 formulation having a 1:1 polymer concentration ratio served as the control formulation. ATR–FTIR analysis was performed to study drug–polymer interactions, and it was found that the drug and polymers were compatible with each other. The formulated patches were further investigated for their physicochemical parameters, in vitro release and ex vivo diffusion characteristics. Different parameters, such as surface pH, physical appearance, thickness, weight uniformity, percent moisture absorption, percent moisture loss, folding endurance, skin irritation, stability and drug content uniformity, were studied. From the hydrophilic mixture, it was observed that viscosity has a direct influence on drug release. Among all formulated patches, the F5 formulation exhibited 82.71% drug release in a sustained-release fashion and followed an anomalous non-Fickian diffusion. The permeation data of the F5 formulation exhibited about a 36.55% cumulative amount of percent drug permeated. The skin showed high retention for the F5 formulation (15.1%). The stability study indicated that all prepared formulations had very good stability for a period of 180 days. Therefore, it was concluded from the present study that methotrexate-loaded transdermal patches with EC and HPMC as polymers at different concentrations suit TDDSs ideally and improve patient compliance for the local management of psoriasis.


Sign in / Sign up

Export Citation Format

Share Document