scholarly journals Cinnoline Derivatives as Antibacterial Agent and Antimycobacterial Agent: Synthesis, Microbial Evaluation and Molecular Docking Study

2020 ◽  
Vol 11 (4) ◽  
pp. 6675-6684
Author(s):  
Prashanthi Evangeline M ◽  
Prem Kumar P ◽  
Bala Murugan K

Fourteen Novel cinnoline library compounds were designed, synthesized through a facile approach, and allowed for screening for anti-bacterial activity and anti-tubercular activity. The titled compounds were entirely synthesized by replacing alkyl groups, sulphonyl, halo groups in the 6th & 7th position of cinnoline moiety. The enlightenment of structure was done by FTIR HNMR along with elemental analysis and further docked for Structural activity. The newly synthesized Cinnoline Compounds were examined for their in vitro drug-sensitive M tuberculosis H37Hv strain. All the compounds have shown MIC between >100-12.5 μg /ml. In this investigation, we Evaluated all the compounds for Anti-bacterial activity. The main compounds were initially tested in vitro for Anti-bacterial activity against gram-positive and gram-negative bacteria by using the Disk plate method. The most active Compound 10 exhibited 12.5 μg /ml inhibitions against drug-sensitive M Tuberculosis H37Rv strain. Among all synthesized compounds CN-7 was found to be a Hit compound with MIC value 12.5 ug/ml Against E Coli.

Author(s):  
Ayyadurai J Suresh ◽  
Sivashankar Nandini ◽  
Krishnanmurthy Sangeetha ◽  
Loganathan S Dhivya ◽  
Parakkot R Surya

Background: Tuberculosis, is a chronic infectious disease, affects one third of the global population. Emergence of Multi-resistant (MDR) strains and high susceptibility of human immunodeficiency virus (HIV) infected persons to the disease forced to develop novel anti-tuberculosis agents and preferably have a novel mechanism of action as to avoid crossresistant with other agents. Literature survey evidences that, Pyridine, Thiadiazole , Benzimidazole; and Acetyl thiophene derivatives exhibit various pharmacological activities, including anti-mycobacterial activity. Methods: Thus, a series of Pyridine, Thiadiazole, Benzimidazole; and Acetyl thiophene based molecules were designed and docked against crucial mtb enzyme target InhA (Enoyl Acyl Carrier Protein Reductase) Enzyme. The docked molecules were screened against good docking-score and multiple interactions and opted for synthesis. Synthesized molecules were re crystallized to obtain the purity. All the purified compounds were characterized by various spectral analyses and evaluated for anti- mycobacterial activity against tuberculosis H37RV strain by Microplate Alamar Blue Assay (MABA) method. Results: The experimental results shown that schiff base of Pyridine (Compounds ‘d’ ) and Benzimidazole derivatives (Compounds ‘i’ ) possesses good anti-tubercular activity with a MIC below 1.6 μg /mL. Further compound ‘e’ of benzimdazole derivative showed good anti tubercular activity with an MIC below 6.25 μg /mL. Whereas 2 - acetyl thiopene compounds exhibited moderate anti tubercular activity at below 50μg/mL. Conclusion: The comparative in vitro and molecular docking study analysis reveals that, compared to chalcones of Acetyl thiophne derivatives, Pyridine, thiadazole and Benzimidazole based schiff bases exhibited best anti tubercular activity.


2020 ◽  
Vol 18 (1) ◽  
pp. 15-23
Author(s):  
Mahesh Bhat ◽  
Shiddappa L. Belagali

Introduction: A new series of benzothiazole azo-ester derivatives was synthesized by using Steglish esterification reaction. Methods: All the synthesized compounds were screened for their anti-TB activities by in-vitro microplate Alamar Blue assay method against M. tuberculosis (H37RV strain). All the compounds showed activities and their MIC values were over the range of 1.6 µg/mL to 50 µg/mL. The compounds 4d and 4j showed superior activity with MIC 1.6 µg/mL compared to the standard drug Streptomycin (MIC 6.25 µ g/mL), Pyrazinamide (MIC 3.125 µ g/mL) and Ciprofloxacin (MIC 3.125 µg/mL). Molecular docking study was carried out with enoyl acyl carrier reductase (InhA) of M. tuberculosis and decaprenyl phosphoryl-D-ribose oxidase (DprE1). Results and Conclusion: These studies showed that these compounds have more interaction with InhA protein whereas some compounds could not be docked into DprE1.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2719 ◽  
Author(s):  
Xiu-juan Lan ◽  
Hai-tao Yan ◽  
Feng Lin ◽  
Shi Hou ◽  
Chen-chen Li ◽  
...  

Polymyxins are considered to be the last-line antibiotics that are used to treat infections caused by multidrug-resistant (MDR) gram-negative bacteria; however, the plasmid-mediated transferable colistin resistance gene (mcr-1) has rendered polymyxins ineffective. Therefore, the protein encoded by mcr-1, MCR-1, could be a target for structure-based design of inhibitors to tackle polymyxins resistance. Here, we identified racemic compound 3 as a potential MCR-1 inhibitor by virtual screening, and 26 compound 3 derivatives were synthesized and evaluated in vitro. In the cell-based assay, compound 6g, 6h, 6i, 6n, 6p, 6q, and 6r displayed more potent activity than compound 3. Notably, 25 μΜ of compound 6p or 6q combined with 2 μg·mL-1 colistin could completely inhibit the growth of BL21(DE3) expressing mcr-1, which exhibited the most potent activity. In the enzymatic assay, we elucidate that 6p and 6q could target the MCR-1 to inhibit the activity of the protein. Additionally, a molecular docking study showed that 6p and 6q could interact with Glu246 and Thr285 via hydrogen bonds and occupy well the cavity of the MCR-1 protein. These results may provide a potential avenue to overcome colistin resistance, and provide some valuable information for further investigation on MCR-1 inhibitors.


2019 ◽  
Vol 70 (3) ◽  
pp. 769-775 ◽  
Author(s):  
Gabriel Marc ◽  
Smaranda Oniga ◽  
Adrian Pirnau ◽  
Mihaela Duma ◽  
Laurian Vlase ◽  
...  

The present paper presents the synthesis, physicochemical characterization, in vitro antimicrobial activity and the molecular docking study of a series of ten new thiazolidine-2,4-dione derivatives conjugated to para-aminobenzoic acid (PABA). The lipophilicity of the new molecules was evaluated in silico. Quantitative elemental C, H, N, S analysis and spectral data (mass spectrometry, infrared and nuclear magnetic resonance) were consistent with the expected data. The results of the antimicrobial activity screening revealed that some of the synthesized compounds had moderate to good activity against E. coli ATCC 25922, S. aureus, ATCC 6538P and C. albicans ATCC 10231.


2021 ◽  
Vol 33 (12) ◽  
pp. 3129-3133
Author(s):  
Varsha S. Honmore ◽  
Vidya K. Kalyankar ◽  
Arun D. Natu ◽  
Vijay M. Khedkar ◽  
Dhiman Sarkar ◽  
...  

Bioassay-guided isolation from acetone extract of Blainvillea latifolia yielded one compound. The acetone extract, fractions and the compound 1 were investigated for antitubercular activity against Mycobacterium tuberculosis H37Ra. Compound 1 showed the activity with IC50 and MIC values at 8.9 and >100 μg/mL. However, the acetone extract of Blainvillea latifolia was inactive against two Gram negative (E. coli, P. flurescence) and two Gram-positive (S. aureus, B. subtilis) bacterial strains. Hence, it was concluded that the extract and the compound 1 are specifically active against MTB and not against bacterial strains. Molecular docking study was performed against crucial mycobacterial target MtInhA to gain an insight into the binding mode and the thermodynamic interactions governing the binding affinity of this molecule.


2020 ◽  
Vol 16 ◽  
Author(s):  
Adinath D. Badar ◽  
Shubham M. Sulakhe ◽  
Mahesh B. Muluk ◽  
Naziya N. M. A. Rehman ◽  
Prashant P. Dixit ◽  
...  

Background: Thiosemicarbazone, 1,2,3-triazole and their derivatives received great pharmaceutical importance due to their prominent biological activities. In the present study, the molecular hybrid thiosemicarbazone-1,2,3-triazoles derivatives were synthesized and screened for their antimicrobial activities. Methods: A series of thiosemicarbazone clubbed with 1,2,3-triazole derivatives were synthesized via click chemistry approach in good yields. The structures of synthesized compounds were assigned by their spectral data. The in vitro antimicrobial activity was performed by the agar well diffusion method. A molecular docking study was performed to identify the possible mode of action of synthesized derivatives. Results: The compounds 5d, 5h, 5i and 5k have exhibited excellent antimicrobial activities against both antibacterial and antifungal pathogens. The active thiosemicarbazone-1,2,3-triazole derivatives have shown excellent binding affinity towards DNA gyrase. Conclusion: The molecular hybrid thiosemicarbazone-1,2,3-triazole derivatives were synthesized. The newly synthesized compounds were evaluated for their antimicrobial activities. Few of the thiosemicarbazone-1,2,3-triazoles derivatives have exhibited good antimicrobial activities. They have been shown excellent binding affinity towards DNA gyrase.


2020 ◽  
Vol 16 (7) ◽  
pp. 892-902 ◽  
Author(s):  
Aida Iraji ◽  
Mahsima Khoshneviszadeh ◽  
Pegah Bakhshizadeh ◽  
Najmeh Edraki ◽  
Mehdi Khoshneviszadeh

Background: Melanogenesis is a process of melanin synthesis, which is a primary response for the pigmentation of human skin. Tyrosinase is a key enzyme, which catalyzes a ratelimiting step of the melanin formation. Natural products have shown potent inhibitors, but some of these possess toxicity. Numerous synthetic inhibitors have been developed in recent years may lead to the potent anti– tyrosinase agents. Objective: A number of 4-hydroxy-N'-methylenebenzohydrazide analogues with related structure to chalcone and tyrosine were constructed with various substituents at the benzyl ring of the molecule and evaluate as a tyrosinase inhibitor. In addition, computational analysis and metal chelating potential have been evaluated. Methods: Design and synthesized compounds were evaluated for activity against mushroom tyrosinase. The metal chelating capacity of the potent compound was examined using the mole ratio method. Molecular docking of the synthesized compounds was carried out into the tyrosine active site. Results: Novel 4-hydroxy-N'-methylenebenzohydrazide derivatives were synthesized. The two compounds 4c and 4g showed an IC50 near the positive control, led to a drastic inhibition of tyrosinase. Confirming in vitro results were performed via the molecular docking analysis demonstrating hydrogen bound interactions of potent compounds with histatidine-Cu+2 residues with in the active site. Kinetic study of compound 4g showed competitive inhibition towards tyrosinase. Metal chelating assay indicates the mole fraction of 1:2 stoichiometry of the 4g-Cu2+ complex. Conclusion: The findings in the present study demonstrate that 4-Hydroxy-N'- methylenebenzohydrazide scaffold could be regarded as a bioactive core inhibitor of tyrosinase and can be used as an inspiration for further studies in this area.


2019 ◽  
Vol 15 (4) ◽  
pp. 373-382 ◽  
Author(s):  
Ralph C. Gomes ◽  
Renata P. Sakata ◽  
Wanda P. Almeida ◽  
Fernando Coelho

Background: The most important cause of dementia affecting elderly people is the Alzheimer’s disease (AD). Patients affected by this progressive and neurodegenerative disease have severe memory and cognitive function impairments. Some medicines used for treating this disease in the early stages are based on inhibition of acetylcholinesterase. Population aging should contribute to increase the cases of patients suffering from Alzheimer's disease, thus requiring the development of new therapeutic entities for the treatment of this disease. Methods: The objective of this work is to identify new substances that have spatial structural similarity with donepezil, an efficient commercial drug used for the treatment of Alzheimer's disease, and to evaluate the capacity of inhibition of these new substances against the enzyme acetylcholinesterase. Results: Based on a previous results of our group, we prepared a set of 11 spirocyclohexadienones with different substitutions patterns in three steps and overall yield of up to 59%. These compounds were evaluated in vitro against acetylcholinesterase. We found that eight of them are able to inhibit the acetylcholinesterase activity, with IC50 values ranging from 0.12 to 12.67 µM. Molecular docking study indicated that the spirocyclohexadienone, 9e (IC50 = 0.12 µM), a mixedtype AChE inhibitor, showed a good interaction at active site of the enzyme, including the cationic (CAS) and the peripheral site (PAS). Conclusion: We described the first study aimed at investigating the biological properties of spirocyclohexadienones as acetylcholinesterase inhibitors. Thus, we have identified an inhibitor, which provided valuable insights for further studies aimed at the discovery of more potent acetylcholinesterase inhibitors.


2020 ◽  
Vol 16 ◽  
Author(s):  
Marjan Mollazadeh ◽  
Maryam Mohammadi-Khanaposhtani ◽  
Yousef Valizadeh ◽  
Afsaneh Zonouzi ◽  
Mohammad Ali Faramarzi ◽  
...  

Background: α-Glucosidase is a hydrolyze enzyme that plays a crucial role in degradation of carbohydrates and starch to glucose. Hence, α-glucosidase is an important target in the carbohydrate mediated diseases such as diabetes mellitus. Objective: In this study, novel coumarin containing dithiocarbamate derivatives 4a-n were synthesized and evaluated against α-glucosidase in vitro and in silico. Methods: These compounds were obtained of reaction between 4-(bromomethyl)-7-methoxy-2H-chromen-2-one 1, carbon disulfide 2, and primary or secondary amines 3a-n in the presence potassium hydroxide and ethanol at room temperature. In vitro α-glucosidase inhibition and kinetic study of these compounds were performed. Furthermore, docking study of the most potent compounds was also performed by Auto Dock Tools (version 1.5.6). Results: Obtained results showed that all the synthesized compounds exhibited prominent inhibitory activities (IC50 = 85.0 ± 4.0-566.6 ± 8.6 μM) in comparison to acarbose as standard inhibitor (IC50 = 750.0 ± 9.0 µM). Among them, secondary amine derivative 4d with pendant indole group was the most potent inhibitor. Enzyme kinetic study of the compound 4d revealed that this compound compete with substrate to connect to the active site of α-glucosidase and therefore is a competitive inhibitor. Also, molecular docking study predicted that this compound as well interacted with α-glucosidase active site pocket. Conclusion: Our results suggest that the coumarin-dithiocarbamate scaffold can be a promising lead structure for design potent α-glucosidase inhibitors for treatment of type 2 diabetes.


Author(s):  
Devidas G. Anuse ◽  
Suraj N. Mali ◽  
Bapu R. Thorat ◽  
Ramesh S. Yamgar ◽  
Hemchandra K. Chaudhari

Background: Antimicrobial resistance is major global health problem, which is being rapidly deteriorating the quality of human health. Series of substituted N-(benzo[d]thiazol-2-yl)-2-(4-(6-fluorobenzo[d]isoxazol-3-yl)piperidin-1-yl)acetamide (3a-j) were synthesized from substituted N-(benzo[d]thiazol-2-yl)-2-chloroacetamide/bromopropanamide (2a-j) and 6-fluoro-3-(piperidin-4-yl)benzo[d]isoxazole (2) and further evaluated for their docking properties and antimicrobial activity. Methods: All synthesized compounds were characterized by FT-IR, NMR and Mass spectral analysis. All compounds were allowed to dock against different antimicrobial targets having PDB ID: 1D7U and against common antifungal target having PDB ID: 1EA1. Results: The compounds 3d and 3h were showed good activity against Methicillin-resistant Staphylococcus aureus (MRSA, resistance Gram-positive bacteria). All synthesized compounds showed good to moderate activity against selected bacterial and fungal microbial strains. If we compared the actual in-vitro antimicrobial activity and in-silico molecular docking study, we found that molecules 3i and 3h were more potent than the others. Conclusion: Our current study would definitely pave the new way towards designing and synthesis of more potent 2-aminobenzothiazoles derivatives.


Sign in / Sign up

Export Citation Format

Share Document