scholarly journals Age-related features of the anaerobic exchange threshold (ANET) in cyclist children

Author(s):  
Сергей Владимирович Комин

Были показаны особенности реакции кардиореспираторной системы на ацидемические изменения. Спортсмены более высокой квалификации имеют более высокий ПАНО, что может служить оценкой качества и интенсивности тренировок на выносливость. The paper demonstrates the cardio-respiratory system response to acidemic changes. Athletes of higher qualifications have a higher threshold of anaerobic metabolism, which can asses the quality and intensity of endurance training.

1992 ◽  
Vol 73 (5) ◽  
pp. 1932-1938 ◽  
Author(s):  
I. Nasrullah ◽  
R. S. Mazzeo

The present investigation examined the extent to which 15 wk of endurance training could influence immune function in young, middle-aged, and older animals. Forty-eight male Fischer 344 rats were divided into trained and untrained groups. Training consisted of treadmill running at 75% maximal running capacity for 1 h/day, 5 days/wk, for 15 wk. Animals were killed at 8, 17, and 27 mo, at which time splenocytes were isolated. The capacity for lymphocyte proliferation in response to mitogen (concanavalin A, ConA), interleukin-2 (IL-2) production, and cytolytic activity against YAC-1 target cells was determined. ConA-induced proliferation declined significantly with age. Training suppressed the proliferative response in the young (-41%) and middle-aged animals (-27%) compared with the age-matched controls; however, training improved this response (+58%) in the older group. IL-2 production followed a pattern similar to that for mitogen-induced proliferation, such that production declined with age and was reduced with training in young and middle-aged animals but was significantly more improved in the older animals than in age-matched controls. The ability to lyse target cells, measured as percent cytotoxicity, declined steadily with advancing age at all effector-to-target cell ratios tested: 52, 14, and -16% for 8-, 17-, and 27-mo-old rats, respectively. It was concluded that the capacity for ConA-induced splenocyte proliferation, IL-2 production, and cytolytic activity declines significantly with advancing age. Furthermore, 15 wk of endurance training suppressed proliferation and IL-2 production in young animals but improved these responses in older animals. Training had no effect on cytolytic activity.


1985 ◽  
Vol 59 (5) ◽  
pp. 1477-1486 ◽  
Author(s):  
M. M. Grunstein ◽  
D. T. Tanaka

Maturation of the respiratory pattern and the active and passive mechanical properties of the respiratory system were assessed in 19 tracheotomized rabbits (postnatal age range: 1–26 days) placed in a body plethysmograph. With maturation both minute ventilation and tidal volume significantly increased, whereas respiratory frequency decreased. When normalized for body weight (kg) both the passive (Rrs X kg) and active (R'rs X kg) resistances of the respiratory system significantly increased with age, whereas the corresponding passive (Crs X kg-1) and active (C'rs X kg-1) compliances significantly decreased. At any given age R'rs X kg only slightly exceeded Rrs X kg, whereas C'rs X kg-1 was significantly lower than Crs X kg-1. Moreover, the maturational increases in Rrs X kg and R'rs X kg exceeded the corresponding decreases in Crs X kg-1 and C'rs X kg-1, resulting in significant age-related increases in both the passive (tau rs) and active (tau'rs) time constants of the respiratory system. Due to the age-related increases in tau'rs, producing a delayed volume response to any given inspiratory driving pressure, the relative volume loss obtained at any time during inspiration was greater in the maturing rabbit. On the other hand, because of concomitant compensatory changes in respiratory pattern, evidenced by increases in inspiratory duration with age, the end-inspiratory tidal volume loss in the maturing animal was maintained generally less than 10% at all postnatal ages. Thus maturational changes in respiratory pattern appear coupled to changes in the active mechanical properties of the respiratory system. The latter coupling serves to optimize the transduction of inspiratory pressure into volume change in a manner consistent with establishing the minimum inspiratory work of breathing during postnatal development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Julie Chambault ◽  
Grégorine Grand ◽  
Bengt Kayser

Objectives: We tested the hypotheses that respiratory muscle endurance training (RMET) improves endurance cycling performance differently in women and men and more so in hypoxia than in normoxia.Design: A prospective pre–post cross-over study with two testing conditions.Methods: Healthy and active women (seven, 24 ± 4 years, mean ± standard deviation [SD]) and men (seven, 27 ± 5 years) performed incremental cycling to determine maximum oxygen consumption (VO2peak) and power output (Wpeak) and on different days two 10-km cycling time trials (TTs) in normoxia and normobaric hypoxia (FiO2, 0.135, ~3,500 m equivalent), in a balanced randomized order. Next they performed supervised RMET in normoxia (4 weeks, 5 days/week, 30 min/day eucapnic hyperpnea at ~60% predicted maximum voluntary ventilation) followed by identical post-tests. During TTs, heart rate, ear oximetry reading, and Wpeak were recorded.Results: The VO2peak and Wpeak values were unchanged after RMET. The TT was improved by 7 ± 6% (p < 0.001) in normoxia and 16 ± 6% (p < 0.001) in hypoxia. The difference between normoxic and hypoxic TT was smaller after RMET as compared with that before RMET (14% vs. 21%, respectively, p < 0.001). All effects were greater in women (p < 0.001). The RMET did not change the heart rate or ear oximetry reading during TTs.Conclusion: We found a greater effect of RMET on cycling TT performance in women than in men, an effect more pronounced in hypoxia. These findings are congruent with the contention of a more pronounced performance-limiting role of the respiratory system during endurance exercise in hypoxia compared with normoxia and more so in women whose respiratory system is undersized compared with that of men.


2018 ◽  
Author(s):  
Bérénice A. Benayoun ◽  
Elizabeth A. Pollina ◽  
Param Priya Singh ◽  
Salah Mahmoudi ◽  
Itamar Harel ◽  
...  

AbstractAging is accompanied by the functional decline of tissues. However, a systematic study of epigenomic and transcriptomic changes across tissues during aging is missing. Here we generated chromatin maps and transcriptomes from 4 tissues and one cell type from young, middle-age, and old mice, yielding 143 high-quality datasets. We focused specifically on chromatin marks linked to gene expression regulation and cell identity: histone H3 trimethylation at lysine 4 (H3K4me3), a mark enriched at promoters, and histone H3 acetylation at lysine 27 (H3K27ac), a mark enriched at active enhancers. Epigenomic and transcriptomic landscapes could easily distinguish between ages, and machine learning analysis showed that specific epigenomic states could predict transcriptional changes during aging. Analysis of datasets from all tissues identified recurrent age-related chromatin and transcriptional changes in key processes, including the upregulation of immune system response pathways such as the interferon signaling pathway. The upregulation of interferon response pathway with age was accompanied by increased transcription of various endogenous retroviral sequences. Pathways deregulated during mouse aging across tissues, notably innate immune pathways, were also deregulated with aging in other vertebrate species – African turquoise killifish, rat, and humans – indicating common signatures of age across species. To date, our dataset represents the largest multi-tissue epigenomic and transcriptomic dataset for vertebrate aging. This resource identifies chromatin and transcriptional states that are characteristic of youthful tissues, which could be leveraged to restore aspects of youthful functionality to old tissues.


Author(s):  
Fangyu Liu ◽  
Amal A Wanigatunga ◽  
Marta Zampino ◽  
Nicolas D Knuth ◽  
Eleanor M Simonsick ◽  
...  

Abstract Previous work has shown that poorer mitochondrial function is associated with age-related perceived fatigability. However, whether glucose oxidation and anaerobic metabolism are intermediate factors underlying this association remains unclear. We examined the total cross-sectional association between mitochondrial function and perceived fatigability in 554 adults aged 22–99 years. Mitochondrial function was assessed by skeletal muscle oxidative capacity (kPCr) using 31P magnetic resonance spectroscopy. Perceived fatigability was measured by rating of perceived exertion after a 5-minute (0.67 m/s) treadmill walk. The intermediate role of glucose oxidation (measured by the rate of change of respiratory exchange ratio [RER change rate] during the 5-minute treadmill walk) and anaerobic metabolism (measured by ventilatory threshold [VeT] during a maximal treadmill test) was evaluated by examining their cross-sectional associations with kPCr and perceived exertion. For each 0.01/s lower kPCr, perceived fatigability was 0.47 points higher (p = .002). A 0.01/s lower kPCr was also associated with 8.3 L/min lower VeT (p < .001). Lower VeT was associated with higher fatigability at lower levels of kPCr but not at higher kPCr levels (β for interaction = 0.017, p = .002). kPCr and RER change rate were not significantly associated (p = .341), but a 0.01/min higher RER change rate was associated with 0.12-point higher fatigability (p = .001). Poorer mitochondrial function potentially contributes to higher perceived fatigability through higher glucose oxidation and higher anaerobic metabolism. Future studies to further explore the longitudinal mechanisms between these metabolic changes and fatigability are warranted.


2020 ◽  
Vol 42 (5) ◽  
pp. 589-605 ◽  
Author(s):  
Aurelia Santoro ◽  
Jiangchao Zhao ◽  
Lu Wu ◽  
Ciriaco Carru ◽  
Elena Biagi ◽  
...  

AbstractDuring the course of evolution, bacteria have developed an intimate relationship with humans colonizing specific body sites at the interface with the body exterior and invaginations such as nose, mouth, lung, gut, vagina, genito-urinary tract, and skin and thus constituting an integrated meta-organism. The final result has been a mutual adaptation and functional integration which confers significant advantages to humans and bacteria. The immune system of the host co-evolved with the microbiota to develop complex mechanisms to recognize and destroy invading microbes, while preserving its own bacteria. Composition and diversity of the microbiota change according to development and aging and contribute to humans’ health and fitness by modulating the immune system response and inflammaging and vice versa. In the last decades, we experienced an explosion of studies on the role of gut microbiota in aging, age-related diseases, and longevity; however, less reports are present on the role of the microbiota at different body sites. In this review, we describe the key steps of the co-evolution between Homo sapiens and microbiome and how this adaptation can impact on immunosenescence and inflammaging. We briefly summarized the role of gut microbiota in aging and longevity while bringing out the involvement of the other microbiota.


Sign in / Sign up

Export Citation Format

Share Document