scholarly journals COVID-19 Antibody Testing of Patients Admitted to the ICU by A Novel, Point-of-Care Assay, and the Relationship to Survival

2021 ◽  
Vol 05 (06) ◽  
Author(s):  
Casswell S ◽  
Eriksson AK ◽  
Moberg L ◽  
Lipcsey M ◽  
Hultstrom M ◽  
...  
2021 ◽  
Author(s):  
Stacey Casswell ◽  
Ann-Katrin Eriksson ◽  
Lena Moberg ◽  
Miklos Lipcsey ◽  
Michael Hultström ◽  
...  

Abstract Diagnosing persons infected by COVID-19 is key to the control of the pandemic. It has, however, become increasingly important to identify those who have had the infection by measurement of circulating antibodies against Sars-COV-2 of the IgM and IgG type. In this report we show the development of a rapid and sensitive point-of-care assay for the measurement of IgG antibodies against the two spike proteins, S1 and S2, of the Sars-COV-2 virus.MethodThe AgPlus electrochemical technology was applied and the S1 and S2 proteins were biotinylated and immobilized onto streptavidin coated magnetic particles as the capture component of the assay. The IgG antibodies bound to the particles were detected by anti-human IgG and the signal expressed as nC (nano Coulomb). Assay time was <10 min.ResultsPlasma (n=211) from 117 SARS-Cov-2 PCR positive patients and from 78 persons with samples taken before the COVID-19 pandemic were analysed. The sensitivity and specificity of the assay were 91.9% and 100%, respectively. The assay was highly correlated to a predicate and FDA-approved IgG antibody ELISA (r=0.81). The IgG response was significantly lower in patients who died during their ICU stay.ConclusionsA poor IgG response after a COVID-19 infection is a serious risk factor as to death. A sensitive, rapid and accurate IgG antibody POC assay should be useful in the daily management and evaluation of COVID-19 infected patients.


2021 ◽  
Vol 147 (2) ◽  
pp. AB77
Author(s):  
Kelly O'Shea ◽  
Charles Schuler ◽  
Jesse Chen ◽  
Carmen Gherasim ◽  
Donald Giacherio ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
pp. e000688
Author(s):  
Focke Ziemssen ◽  
You-Shan Feng ◽  
Sven Schnichels ◽  
Tarek Bayyoud ◽  
Marius Ueffing ◽  
...  

IntroductionThe actual prevalence of a SARS-CoV-2 infection and the individual assessment of being or having been infected may differ. Facing the great uncertainty—especially at the beginning of the pandemic—and the possibility of asymptomatic or mildly symptomatic, subclinical infections, we evaluate the experience of SARS-CoV-2 antibody screening at a tertiary clinical setting.Methods and analysisAll employees of a tertiary eye centre and a research institute of ophthalmology were offered antibody testing in May 2020, using a sequential combination of different validated assays/antigens and point-of-care (POC) testing for a subset (NCT04446338). Before taking blood, a systematic inquiry into past symptoms, known contacts and a subjective self-assessment was documented. The correlations between serostatus, patient contacts and demographic characteristics were analysed. Different tests were compared by Kappa statistics.ResultsAmong 318 participants, SARS-CoV-2 antibodies were detected in 9 employees. Chemiluminescence assays (chemiluminescence immunoassay and electrochemiluminescence) showed superior specificity and high reproducibility, compared with ELISA and POC results.In contrast to the low seropositivity (2.8%) of healthcare workers, higher than that of the other departments of the hospital, a large proportion mistakenly assumed that they might have already been infected. Antiviral antibody titres increased and remained on a plateau for at least 3 months.ConclusionsThe great demand and acceptance confirmed the benefit of highly sensitive testing methods in the early phase of the pandemic. The coincidence of low seroprevalence and anxious employees may have contributed to internalising the need of hygiene measures.


2003 ◽  
Vol 332 (1-2) ◽  
pp. 51-59 ◽  
Author(s):  
Jae Soon Ahn ◽  
Sunga Choi ◽  
Sang Ho Jang ◽  
Hyuk Jae Chang ◽  
Jae Hoon Kim ◽  
...  

2005 ◽  
Vol 16 (1) ◽  
pp. 26-30 ◽  
Author(s):  
Margaret Fearon

HIV diagnostic testing has come a long way since its inception in the early 1980s. Current enzyme immunoassays are sensitive enough to detect antibody as early as one to two weeks after infection. A variety of other assays are essential to confirm positive antibody screens (Western blot, polymerase chain reaction [PCR]), provide an adjunct to antibody testing (p24 antigen, PCR), or provide additional information for the clinician treating HIV-positive patients (qualitative and quantitative PCR, and genotyping). Most diagnostic laboratories have complex testing algorithms to ensure accuracy of results and optimal use of laboratory resources. The choice of assays is guided by the initial screening results and the clinical information provided by the physician; both are integral to the laboratory's ability to provide an accurate laboratory diagnosis. Laboratories should also provide specific information on specimen collection, storage and transport so that specimen integrity is not compromised, thereby preserving the accuracy of laboratory results. Point of Care tests have become increasingly popular in the United States and some places in Canada over the past several years. These tests provide rapid, on-site HIV results in a format that is relatively easy for clinic staff to perform. However, the performance of these tests requires adherence to good laboratory quality control practices, as well as the backup of a licensed diagnostic laboratory to provide confirmation and resolution of positive or indeterminate results. Laboratory quality assurance programs and the participation in HIV proficiency testing programs are essential to ensure that diagnostic laboratories provide accurate, timely and clinically relevant laboratory results.


Author(s):  
Katalin Dózsa ◽  
Fruzsina Mezei ◽  
Tamás Tóth ◽  
Ábel Perjés ◽  
Péter Pollner

Abstract Background: Expectations towards general practitioners (GPs) are continuously increasing to provide a more systematic preventive- and definitive-based care, a wider range of multidisciplinary team-based services and to integrate state-of-the-art digital solutions into daily practice. Aided by development programmes, Hungarian primary care is facing the challenge to fulfil its role as the provider of comprehensive, high quality, patient-centred, preventive care, answering the challenges caused by non-communicable diseases (NCDs). Aim: The article aims to provide an insight into the utilization of simple, digital, medical devices. We show the relationship between the primary health care (PHC) practice models and the used types of devices. We point at further development directions of GP practices regarding the utilization of evidence-based medical technologies and how such devices support the screening and chronic care of patients with NCDs in everyday practice. Methods: Data were collected using an online self-assessment questionnaire from 1800 Hungarian GPs registered in Hungary. Descriptive statistics, Wilcoxon’s test and χ2 test were applied to analyze the ownership and utilization of 32 types of medical devices, characteristics of the GP practices and to highlight the differences between traditional and cluster-based operating model. Findings: Based on the responses from 27.7% of all Hungarian GPs, the medical device infrastructure was found to be limited especially in single GP-practices. Those involved in development projects of GP’s clusters in the last decade reported a wider range and significantly more intensive utilization of evidence-based technologies (average number of devices: 5.42 versus 7.56, P<.001), but even these GPs are not using some of their devices (e.g., various point of care testing devices) due to the lack of financing. In addition, GPs involved in GPs-cluster development model programmes showed significantly greater willingness for sharing relatively expensive, extra workforce-demanding technologies (χ2 = 24.5, P<.001).


Sign in / Sign up

Export Citation Format

Share Document