scholarly journals Effect of Time and Reaction Speed on Making Liquid Soap in Terms of Viscosity and Density Values

2021 ◽  
Vol 8 (1) ◽  
pp. 39
Author(s):  
Erna Astuti ◽  
Aster Rahayu ◽  
Endah Sulistiawati
Author(s):  
A. W. West

The influence of the filament microstructure on the critical current density values, Jc, of Nb-Ti multifilamentary superconducting composites has been well documented. However the development of these microstructures during composite processing is still under investigation.During manufacture, the multifilamentary composite is given several heat treatments interspersed in the wire-drawing schedule. Typically, these heat treatments are for 5 to 80 hours at temperatures between 523 and 573K. A short heat treatment of approximately 3 hours at 573K is usually given to the wire at final size. Originally this heat treatment was given to soften the copper matrix, but recent work has shown that it can markedly change both the Jc value and microstructure of the composite.


Author(s):  
I-Fei Tsu ◽  
D.L. Kaiser ◽  
S.E. Babcock

A current theme in the study of the critical current density behavior of YBa2Cu3O7-δ (YBCO) grain boundaries is that their electromagnetic properties are heterogeneous on various length scales ranging from 10s of microns to ˜ 1 Å. Recently, combined electromagnetic and TEM studies on four flux-grown bicrystals have demonstrated a direct correlation between the length scale of the boundaries’ saw-tooth facet configurations and the apparent length scale of the electrical heterogeneity. In that work, enhanced critical current densities are observed at applied fields where the facet period is commensurate with the spacing of the Abrikosov flux vortices which must be pinned if higher critical current density values are recorded. To understand the microstructural origin of the flux pinning, the grain boundary topography and grain boundary dislocation (GBD) network structure of [001] tilt YBCO bicrystals were studied by TEM and HRTEM.


1993 ◽  
Vol 55 (2) ◽  
pp. 337-341
Author(s):  
YOSHIKO KURATA
Keyword(s):  

2017 ◽  
Author(s):  
Robson de Farias

In the present work, the reliability of the volume-based thermodynamics (VBT) methods in the calculation of lattice energies is investigated by applying the “traditional” Kapustinskii equation [8], as well as Glasser-Jenkins [3] and Kaya [5] equations to calculate the lattice energies for Na, K and Rb pyruvates [9-11] as well as for the coordination compound [Bi(C<sub>7</sub>H<sub>5</sub>O<sub>3</sub>)<sub>3</sub>C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>] [17] (in which C<sub>12</sub>H<sub>8</sub>N<sub>2</sub> = 1,10 phenathroline and C<sub>7</sub>H<sub>5</sub>O<sub>3</sub><sup>-</sup>= <i>o</i>-hyddroxybenzoic acid anion). As comparison, the lattice energies are also calculated using formation enthalpy values for sodium pyrivate and [Bi(C<sub>7</sub>H<sub>5</sub>O<sub>3</sub>)<sub>3</sub>C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>]. For the pyruvates, is verified that none of the considered approach, Kapustinskii, Glasser, Kaya or density, provides values that agrees in an acceptable % difference, with the lattice energy values calculated from the formation enthalpy values. However, it must be pointed out that Kaya approach, with deals with a chemical hardness approach is the better one for such kind of inorganic-organic salts. Based on data obtained for [Bi(C<sub>7</sub>H<sub>5</sub>O<sub>3</sub>)<sub>3</sub>C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>] is concluded that the only one VBT method that provides reliable lattice energies for compounds with bulky uncharged ligands is that one based on density values (derived by Glasser-Jenkins).


2016 ◽  
Vol 8 (15) ◽  
pp. 47-54
Author(s):  
Haspiadi Haspiadi

The purpose of this research is to know the influence of pressure and use of conplast against mechanical properties which are a Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) of plasterboard. The study is done because still low quality of plasterboard made from a mixture of ashes of oil-palm shell especially of the mechanical properties compared to the controls. The method of this reserach used variation of printed pressure and the addition of conplast. Test result is obtained that the highest value of Modulus of Elasticity (MOE) 90875.94 Kg/cm2, Modulus of Rupture (MOR) 61.16 Kg/cm2 and density values in generally good printed at the pressure 60 g/cm3 and the addition of conplast 25% as well as the composition of the ash of palm shell oil 40%: limestone 40%: cement 15%: fiber 5% and 300 mL of water. ABSTRAK Tujuan dari penelitian ini adalah untuk mengetahui pengaruh tekanan dan penggunaan conplast terhadap sifat mekanik yaitu kuat lentur dan keteguhan patah eternit berbahan dasar abu cangkang sawit. Penelitian ini dilakukan karena masi rendahnya mutu eternit berbahan campuran abu cangkang sawit dari bolier khususnya sifat mekanik dibandingkan dengan kontrol. Metode penelitian yang digunakan adalah dengan variasi tekanan cetak dan penambahan conplast. Hasil uji diperoleh bahwa kuat lentur tertinggi sebesar 90875,94 Kg/cm2 dan keteguhan patah sebesar 61,16 Kg/cm2, yang dicetak pada tekanan 60 g/cm3 dan penambahan conplast 25% dengan komposisi  abu cangkang sawit 40 %: kapur 40 % : semen 15 %: serat 5 % dan air 300 mL.Kata Kunci :  Abu cangkang sawit, conplast, kuat lentur, keteguhan patah.


2021 ◽  
Vol 22 (9) ◽  
pp. 4822
Author(s):  
Viktória Kovács ◽  
Gábor Remzső ◽  
Tímea Körmöczi ◽  
Róbert Berkecz ◽  
Valéria Tóth-Szűki ◽  
...  

Hypoxic–ischemic encephalopathy (HIE) remains to be a major cause of long-term neurodevelopmental deficits in term neonates. Hypothermia offers partial neuroprotection warranting research for additional therapies. Kynurenic acid (KYNA), an endogenous product of tryptophan metabolism, was previously shown to be beneficial in rat HIE models. We sought to determine if the KYNA analog SZR72 would afford neuroprotection in piglets. After severe asphyxia (pHa = 6.83 ± 0.02, ΔBE = −17.6 ± 1.2 mmol/L, mean ± SEM), anesthetized piglets were assigned to vehicle-treated (VEH), SZR72-treated (SZR72), or hypothermia-treated (HT) groups (n = 6, 6, 6; Tcore = 38.5, 38.5, 33.5 °C, respectively). Compared to VEH, serum KYNA levels were elevated, recovery of EEG was faster, and EEG power spectral density values were higher at 24 h in the SZR72 group. However, instantaneous entropy indicating EEG signal complexity, depression of the visual evoked potential (VEP), and the significant neuronal damage observed in the neocortex, the putamen, and the CA1 hippocampal field were similar in these groups. In the caudate nucleus and the CA3 hippocampal field, neuronal damage was even more severe in the SZR72 group. The HT group showed the best preservation of EEG complexity, VEP, and neuronal integrity in all examined brain regions. In summary, SZR72 appears to enhance neuronal activity after asphyxia but does not ameliorate early neuronal damage in this HIE model.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Benjamin Wullobayi Dekongmen ◽  
Amos Tiereyangn Kabo-bah ◽  
Martin Kyereh Domfeh ◽  
Emmanuel Daanoba Sunkari ◽  
Yihun Taddele Dile ◽  
...  

AbstractFloods in Ghana have become a perennial challenge in the major cities and communities located in low-lying areas. Therefore, cities and communities located in these areas have been classified as potential or natural flood-prone zones. In this study, the Digital Elevation Model (DEM) of the Accra Metropolis was used to assess the drainage density and elevation patterns of the area. The annual population estimation data and flood damages were assessed to understand the damages and population trend. This research focused primarily on the elevation patterns, slope patterns, and drainage density of the Accra Metropolis. Very high drainage density values, which range between 149 and 1117 m/m2, showed very high runoff converging areas. High drainage density was also found to be in the range of 1117–1702 m/m2, which defined the area as a high runoff converging point. The medium and low converging points of runoff were also found to be ranging between 1702–2563 m/m2 and 2563–4070 m/m2, respectively. About 32% of the study area is covered by natural flood-prone zones, whereas flood-prone zones also covered 33% and frequent flood zones represent 25%. Areas in the Accra Metropolis that fall in the Accraian and Togo series rock types experience high floods. However, the lineament networks (geological structures) that dominate the Dahomeyan series imply that the geological structures in the Dahomeyan series also channel the runoffs into the low-lying areas, thereby contributing to the perennial flooding in the Accra Metropolis.


CORROSION ◽  
2012 ◽  
Vol 68 (6) ◽  
pp. 489-498 ◽  
Author(s):  
G. Williams ◽  
K. Gusieva ◽  
N. Birbilis

The influence of neodymium (Nd) alloying additions in the 0.47 wt% to 3.53 wt% range on the localized corrosion behavior of Mg, when freely corroding in aqueous sodium chloride (NaCl) electrolyte, is investigated using an in situ scanning vibrating electrode technique (SVET). For all samples, the point of surface breakdown is an intense focal anode that expands radially with respect to time, revealing a cathodically activated interior, which is galvanically coupled with the local anode at the perimeter. However, for Nd compositions of ≤0.74%, radial expansion ceases within ca. 2 h of initiation, whereupon dark filiform-like corrosion features are observed, which traverse over the exposed Mg surface. For Nd additions of ≥1.25%, the radial expansion continues with time up to a point where the entire intact surface becomes consumed. The intensity of the local anode ring of circular corroded regions is seen to increase as more cathodically activated corroded surface becomes exposed. Mean current density values measured within these corroded areas increase progressively with Nd content, leading to a progressive rise in localized corrosion rates. The cathodic activation of corroded regions is proposed to derive from an enrichment of noble, Nd-rich intermetallic grains caused as the alpha-Mg phase becomes attacked at local anode sites.


1986 ◽  
Vol 23 (9) ◽  
pp. 1257-1264 ◽  
Author(s):  
K. Wang ◽  
P. Y. Shen ◽  
A. E. Beck

In heat flow determinations, it is customary to treat the surface temperature variation as a finite sum of Fourier components. The medium is assumed to be homogeneous or horizontally stratified with each layer having a constant conductivity and diffusivity. This allows the effect of each periodic component to be calculated analytically. We extend this formulation to include cases where thermal conductivities in some layers of a stratified medium may vary linearly with depth as have been found in the sediments of some continental lakes. The application of this formalism to temperature measurements in Lake Greifensee and Lac Leman shows that even with excellent records of bottom temperature variations over several years, failure to take into account the conductivity variation leads to errors as high as 20% in heat flow density values, depending on the depth interval used. The combined effects of lack of detailed knowledge of conductivity structure and the use of too short and (or) inaccurate records of bottom temperature variations, leading to very significant errors, are also discussed, with particular reference to the problems arising from a lack of recognition of the existence of nonannual terms in the bottom temperature variation and the use of probes that do not penetrate the sediments deeply enough.


Sign in / Sign up

Export Citation Format

Share Document