scholarly journals The Kynurenic Acid Analog SZR72 Enhances Neuronal Activity after Asphyxia but Is Not Neuroprotective in a Translational Model of Neonatal Hypoxic Ischemic Encephalopathy

2021 ◽  
Vol 22 (9) ◽  
pp. 4822
Author(s):  
Viktória Kovács ◽  
Gábor Remzső ◽  
Tímea Körmöczi ◽  
Róbert Berkecz ◽  
Valéria Tóth-Szűki ◽  
...  

Hypoxic–ischemic encephalopathy (HIE) remains to be a major cause of long-term neurodevelopmental deficits in term neonates. Hypothermia offers partial neuroprotection warranting research for additional therapies. Kynurenic acid (KYNA), an endogenous product of tryptophan metabolism, was previously shown to be beneficial in rat HIE models. We sought to determine if the KYNA analog SZR72 would afford neuroprotection in piglets. After severe asphyxia (pHa = 6.83 ± 0.02, ΔBE = −17.6 ± 1.2 mmol/L, mean ± SEM), anesthetized piglets were assigned to vehicle-treated (VEH), SZR72-treated (SZR72), or hypothermia-treated (HT) groups (n = 6, 6, 6; Tcore = 38.5, 38.5, 33.5 °C, respectively). Compared to VEH, serum KYNA levels were elevated, recovery of EEG was faster, and EEG power spectral density values were higher at 24 h in the SZR72 group. However, instantaneous entropy indicating EEG signal complexity, depression of the visual evoked potential (VEP), and the significant neuronal damage observed in the neocortex, the putamen, and the CA1 hippocampal field were similar in these groups. In the caudate nucleus and the CA3 hippocampal field, neuronal damage was even more severe in the SZR72 group. The HT group showed the best preservation of EEG complexity, VEP, and neuronal integrity in all examined brain regions. In summary, SZR72 appears to enhance neuronal activity after asphyxia but does not ameliorate early neuronal damage in this HIE model.

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiuyun Liu ◽  
Aylin Tekes ◽  
Jamie Perin ◽  
May W. Chen ◽  
Bruno P. Soares ◽  
...  

Dysfunctional cerebrovascular autoregulation may contribute to neurologic injury in neonatal hypoxic-ischemic encephalopathy (HIE). Identifying the optimal mean arterial blood pressure (MAPopt) that best supports autoregulation could help identify hemodynamic goals that support neurologic recovery. In neonates who received therapeutic hypothermia for HIE, we hypothesized that the wavelet hemoglobin volume index (wHVx) would identify MAPopt and that blood pressures closer to MAPopt would be associated with less brain injury on MRI. We also tested a correlation-derived hemoglobin volume index (HVx) and single- and multi-window data processing methodology. Autoregulation was monitored in consecutive 3-h periods using near infrared spectroscopy in an observational study. The neonates had a mean MAP of 54 mmHg (standard deviation: 9) during hypothermia. Greater blood pressure above the MAPopt from single-window wHVx was associated with less injury in the paracentral gyri (p = 0.044; n = 63), basal ganglia (p = 0.015), thalamus (p = 0.013), and brainstem (p = 0.041) after adjustments for sex, vasopressor use, seizures, arterial carbon dioxide level, and a perinatal insult score. Blood pressure exceeding MAPopt from the multi-window, correlation HVx was associated with less injury in the brainstem (p = 0.021) but not in other brain regions. We conclude that applying wavelet methodology to short autoregulation monitoring periods may improve the identification of MAPopt values that are associated with brain injury. Having blood pressure above MAPopt with an upper MAP of ~50–60 mmHg may reduce the risk of brain injury during therapeutic hypothermia. Though a cause-and-effect relationship cannot be inferred, the data support the need for randomized studies of autoregulation and brain injury in neonates with HIE.


Author(s):  
Sirajuddin Nazeer ◽  
Senthilkumar K. ◽  
Thangavel A. ◽  
Uma Maheswari M.

Background: The aim of the study was to find out the neurodevelopmental outcome of babies with hypoxic ischemic encephalopathy at 6 months of age and to predict early markers of abnormal neurological outcome in those babies.Methods: 50 babies admitted with hypoxic ischemic encephalopathy were enrolled in this prospective study and followed up at 3 and 6 months of age at Mahatma Gandhi Memorial Government Hospital, Trichy. The neurological outcome of the babies was assessed by CDC grading of motor milestones, Trivandrum development screening chart, Amiel Tison angles head circumference and weight measured. USG cranium was done for all the babies and MRI brain was done in babies with abnormal neuro sonogram and abnormal outcome. Vision and hearing were tested clinically.Results: The incidence of abnormal neurological outcome was 14%. The early markers predicting abnormal neurological sequele are identified.Conclusions: Early identification of abnormal neuro behaviour helps in starting early intervention to improve the long term outcome.


2019 ◽  
Vol 35 (3) ◽  
pp. 477-483 ◽  
Author(s):  
Francesco Cavallin ◽  
Giulia Rubin ◽  
Enrico Vidal ◽  
Elisa Cainelli ◽  
Luca Bonadies ◽  
...  

2005 ◽  
Vol 27 (1) ◽  
pp. 16-21 ◽  
Author(s):  
Kristine M. McCulloch ◽  
Tonse N. K. Raju ◽  
Shankararao Navale ◽  
C. Tyler Burt ◽  
Tabasam Roohey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document