scholarly journals Correction of cognitive-mnestic dysfunction of rats after ketamine anesthesia under the influence of heteroside

Today, in medical practice, a very promising direction of development can be the expansion of the range of primary and secondary neuroprotection drugs through the use of targeted synthesis of potential neuroprotective agents with analeptic effect. This is necessary to improve anesthetic safety during surgery and to alleviate post-anesthetic intoxication after anesthesia. Therefore, the aim of our study was to compare the neuroprotective activity of original derivatives of sulfur and nitrogen-containing heterocycles (heterosides) and reference drugs, which are already known in pharmacology (cerebroprotective agent with neurotrophic action ¾ cerebrocurin and nootropic drug with neuroprotective action ¾ noopept). In the course of the research, it was found that after ketamine anesthesia, the excitability of the central nervous system increases, the anxious behavior of animals increases, while the indicators of the research work of animals in the experiment sharply deteriorate. After 2 days or more (10 days) after the transferred ketamine anesthesia, a deterioration in mnestic functions was noted in this group of animals. With the introduction of 100 mg / kg of heteroside to a group of rats after ketamine anesthesia, the indicators of anxiety behavior and excitability of animals significantly decreased, their research activity increased, a pronounced antiamnestic effect was manifested, and the ability of animals to learn was increased as well. It also turned out that in terms of the degree of influence on the indicators of the cognitive-mnestic functions of the central nervous system, heteroside statistically significantly exceeds the comparison drugs cerebrocurin and noopept, which in turn showed high efficiency in reducing anxiety of animals, and also had an antiamnestic effect, but did not affect the ability of animals to learn.

2017 ◽  
Vol 19 (3) ◽  
pp. 45
Author(s):  
Karol Ramírez Chan DDS, MSc, PhD ◽  
Jaime Jaime Fornaguera-Trías PhD

Objective: Standardize a protocol of immunohistochemistry that has been widely used in C57BL/6J mice to identify microglia of the central nervous system in Wistar rats.  Materials and Methods: This research activity was carried out in two parts. In the first part, a protocol of immunohistochemistry was implemented to identify microglia in the central nervous system of 6 Wistar rats. A primary antibody with reactivity to rat and a specific secondary antibody to the primary were used. Once the protocol was established in rats' brains, an immunological challenge was produced with the intraperitoneal application of lipopolysaccharide in 2 Wistar rats, in order to evidence the changes in microglia morphology.  Results and Discussion: We demonstrate that without making major modifications to the original protocol, it can also be used to identify microglia in adult Wistar rats. In the near future, this immunostaining protocol will be applied to elucidate the bidirectional interaction between the brain and the immune system, under homeostatic conditions and different physiological and pathological stimuli.


2020 ◽  
Vol 34 (6) ◽  
pp. 753-761
Author(s):  
Vamsi Bandi ◽  
Debnath Bhattacharyya ◽  
Divya Midhunchakkravarthy

In recent years strokes are one of the leading causes of death by affecting the central nervous system. Among different types of strokes, ischemic and hemorrhagic majorly damages the central nervous system. According to the World Health Organization (WHO), globally 3% of the population are affected by subarachnoid hemorrhage, 10% with intracerebral hemorrhage, and the majority of 87% with ischemic stroke. In this research work, Machine Learning techniques are applied in identifying, classifying, and predicting the stroke from medical information. The existing research is limited in predicting risk factors pertained to various types of strokes. To address this limitation a Stroke Prediction (SPN) algorithm is proposed by using the improvised random forest in analyzing the levels of risks obtained within the strokes. This research of the Stroke Predictor (SPR) model using machine learning techniques improved the prediction accuracy to 96.97% when compared with the existing models.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yan Fu ◽  
Jianmei Yang ◽  
Xingyu Wang ◽  
Pin Yang ◽  
Yang Zhao ◽  
...  

Since microglia possess both neuroprotective and neurotoxic potential, they play a crucial role in the central nervous system (CNS). Excessive microglial activation induces inflammation-mediated neuronal damage and degeneration. At present, numerous herbal compounds are able to suppress neurotoxicity via inhibiting microglial activation. Therefore, many researchers focus on pharmacological inhibitors of microglial activation to ameliorate neurodegenerative disorders. Further work should concentrate on the exploration of new herbal compounds, which characteristically inhibit microglial neurotoxicity, rather than modulating neuroprotection alone. In this review, we summarize these herbal compounds, which in the past several years have been shown to exert potential neuroprotective activity by inhibiting microglial activation. The therapeutic targets and pharmacological mechanisms of these compounds have also been discussed.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1717
Author(s):  
Elżbieta Studzińska-Sroka ◽  
Aleksandra Majchrzak-Celińska ◽  
Przemysław Zalewski ◽  
Dominik Szwajgier ◽  
Ewa Baranowska-Wójcik ◽  
...  

Lichen secondary metabolites are characterized by huge pharmacological potential. Our research focused on assessing the anticancer and neuroprotective activity of Hypogymnia physodes acetone extract (HP extract) and physodic acid, its major component. The antitumor properties were evaluated by cytotoxicity analysis using A-172, T98G, and U-138 MG glioblastoma cell lines and by hyaluronidase and cyclooxygenase-2 (COX-2) inhibition. The neuroprotective potential was examined using COX-2, tyrosinase, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) activity tests. Moreover, the antioxidant potential of the tested substances was examined, and the chemical composition of the extract was analyzed. For physodic acid, the permeability through the blood–brain barrier using Parallel Artificial Membrane Permeability Assay for the Blood–Brain Barrier assay (PAMPA-BBB) was assessed. Our study shows that the tested substances strongly inhibited glioblastoma cell proliferation and hyaluronidase activity. Besides, HP extract diminished COX-2 and tyrosinase activity. However, the AChE and BChE inhibitory activity of HP extract and physodic acid were mild. The examined substances exhibited strong antioxidant activity. Importantly, we proved that physodic acid crosses the blood–brain barrier. We conclude that physodic acid and H. physodes should be regarded as promising agents with anticancer, chemopreventive, and neuroprotective activities, especially regarding the central nervous system diseases.


2011 ◽  
Vol 5 (S8) ◽  
Author(s):  
Marina Etcheverrigaray ◽  
Natalia Ceaglio ◽  
Mónica Mattio ◽  
Marcos Oggero ◽  
Ignacio Amadeo ◽  
...  

Author(s):  
Gladys Harrison

With the advent of the space age and the need to determine the requirements for a space cabin atmosphere, oxygen effects came into increased importance, even though these effects have been the subject of continuous research for many years. In fact, Priestly initiated oxygen research when in 1775 he published his results of isolating oxygen and described the effects of breathing it on himself and two mice, the only creatures to have had the “privilege” of breathing this “pure air”.Early studies had demonstrated the central nervous system effects at pressures above one atmosphere. Light microscopy revealed extensive damage to the lungs at one atmosphere. These changes which included perivascular and peribronchial edema, focal hemorrhage, rupture of the alveolar septa, and widespread edema, resulted in death of the animal in less than one week. The severity of the symptoms differed between species and was age dependent, with young animals being more resistant.


Author(s):  
John L.Beggs ◽  
John D. Waggener ◽  
Wanda Miller ◽  
Jane Watkins

Studies using mesenteric and ear chamber preparations have shown that interendothelial junctions provide the route for neutrophil emigration during inflammation. The term emigration refers to the passage of white blood cells across the endothelium from the vascular lumen. Although the precise pathway of transendo- thelial emigration in the central nervous system (CNS) has not been resolved, the presence of different physiological and morphological (tight junctions) properties of CNS endothelium may dictate alternate emigration pathways.To study neutrophil emigration in the CNS, we induced meningitis in guinea pigs by intracisternal injection of E. coli bacteria.In this model, leptomeningeal inflammation is well developed by 3 hr. After 3 1/2 hr, animals were sacrificed by arterial perfusion with 3% phosphate buffered glutaraldehyde. Tissues from brain and spinal cord were post-fixed in 1% osmium tetroxide, dehydrated in alcohols and propylene oxide, and embedded in Epon. Thin serial sections were cut with diamond knives and examined in a Philips 300 electron microscope.


Sign in / Sign up

Export Citation Format

Share Document