scholarly journals Development of Lab Test Mode to Estimate Performance Drop of Brake Pads Base on Circuit Test Results

2018 ◽  
Vol 2 (6) ◽  
pp. 44-49
Author(s):  

: This paper presents the systematical approach to generate lab test mode using a brake dynamometer to estimate performance drop of brake pads under the circuit driving condition. AUDI R8 with cast iron disc brake system is used as the reference vehicle. Brake pad performance drop is characterized by driving vehicle on F1 circuit, performing a subjective and objective evaluation of the brake performance, analyzing the evolution of the significant parameters related with brake performance drop. Taking into account all the data and information gathered in vehicle test, a well correlated brake pad lab test mode is developed.

2013 ◽  
Vol 10 (6) ◽  
pp. 523-528 ◽  
Author(s):  
A. Muzathik ◽  
Y. Nizam ◽  
M. Ahmad ◽  
W. Nik

Friction material in an automotive brake system plays an important role for effective and safe brake performance. A single material has never been sufficient to solve performance related issues. Current research aimed to examine properties of Boron mixed brake pads by comparing them with the commercial brake pads. Friction coefficient of Boron mixed brake pads and commercial brake pads were significantly different and increased with the increase in surface roughness. The abrupt reduction of friction coefficient is more significant in commercial brake pad samples than in Boron mixed brake pad formulations. Fade occurred in commercial brake pad sample at lower temperatures. Boron formulations are more stable than their commercial counterparts.


2014 ◽  
Vol 71 (2) ◽  
Author(s):  
M.K. Abdul Hamid ◽  
N.I. Shasudin ◽  
A.R. Mat Lazim ◽  
A.R. Abu Bakar

Brake pad and disc design are important factors in ensuring excellent brake performance. But, particles from the environment can easily enter and interrupt the braking process and reduce braking performance. Friction depends on the design and surface properties of the pad and the disc. Wear happens in the brake system as the pad and disc try to withstand the braking force during the braking process.  An experiment using brake dynamometer is done in order to determine the design effects on friction and wear when hard particle are present during the braking process. The test used three different brake pad designs under medium sliding load condition. It is found that Design 2 with a middle line groove provides better and stable brake torque and friction performance compared to Design 1 and Design 3. Design 2 also gavethe smallestweight loss inthe wear analysis of the pad.


Author(s):  
W. C. Solomon ◽  
M. T. Lilly ◽  
J. I. Sodiki

The development and evaluation of brake pads using groundnut shell (GS) particles as substitute material for asbestos were carried out in this study. This was with a view to harnessing the properties of GS, which is largely deposited as waste, and in replacing asbestos which is carcinogenic in nature despite its good tribological and mechanical properties. Two sets of composite material were developed using varying particle sizes of GS as filler material, with phenolic resin as binder with percentage compositions of 45% and 50% respectively. Results obtained indicate that the compressive strength and density increase as the sieve size of the filler material decreases, while water and oil absorption rates increase with an increase in sieve size of GS particle. This study also indicates that the cost of producing brake pad can be reduced by 19.14 percent if GS is use as filler material in producing brake pad. The results when compared with those of asbestos and industrial waste showed that GS particle can be used as an effective replacement for asbestos in producing automobile brake pad. Unlike asbestos, GS-based brake pads are environmental friendly, biodegradable and cost effective.


2014 ◽  
Vol 71 (2) ◽  
Author(s):  
Hussain, S. ◽  
M.K Abdul Hamid ◽  
A.R Mat Lazim ◽  
A.R. Abu Bakar

Brake wear particles resulting from friction between the brake pad and disc are common in brake system. In this work brake wear particles were analyzed based on the size and shape to investigate the effects of speed and load applied to the generation of brake wear particles. Scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) was used to identify the size, shape and element compositions of these particles. Two types of brake pads were studied which are non-asbestos organic and semi metallic brake pads. Results showed that the size and shape of the particles generatedvary significantly depending on the applied brake load, and less significantly on brake disc speed. The wear particle becomes bigger with increasing applied brake pressure. The wear particle size varies from 300 nm to 600 µm, and contained elements such as carbon, oxygen, magnesium, aluminum, sulfur and iron.


Author(s):  
Joseph Abutu ◽  
S.A. Lawal ◽  
M.B. Ndaliman ◽  
R. A. Lafia-Araga ◽  
M. A. Oluleye

Over many years, asbestos has been used as reinforcement material in the production of brake pads production but it has lost favour due to its carcinogenic nature, as a result, there is need to investigate other possible substitute which can offer similar tribological properties as the carcinogenic material (asbestos). Several works has been carried out using different reinforcement material with the aim of finding a possible replacement for asbestos. In this work, Rule of mixture (ROM) was ustlised for sample formulation and the tribological properties of natural based material (coconut shell and seashell) were investigated using experimental design (response surface methodology) and multi-response optimisation technique (Grey relational analysis). The multi-response performance of the formulated brake pads samples was compared with a commercial brake pad sample. The research findings revealed that sample can be produced using 52% reinforcement, 35% binder, 8% abrasive and 5% friction modifier while the Grey relational analysis (GRA) showed that optimum multi-response performance of the developed coconut shell based sample can be achieved using MP, MT and CT and HTT of 12MPa, 100 oC, 6mins and 2hrs respectively while that of the developed seashell based brake pad can be achieved using MP, MT and CT and HTT of 10MPa, 160 oC, 12mins and 2hrs respectively. Also, the Analysis of variance (ANOVA) results show a percentage error of less than 5% indicating minima noise effect. In addition, the optimized coconut shell-based brake pads falls within the category of class H (µ >0.55) type of brake pads while seashell based sample falls within the class G (µ: 0.45-0.55) type of brake pads. It therefore concluded that the use of coconut shell can serve as a better substitute for asbestos-based brake pads.


Author(s):  
CH Achebe ◽  
JL Chukwuneke ◽  
FA Anene ◽  
CM Ewulonu

The development of automobile brake pad using locally sourced palm kernel fiber was carried out. Asbestos, a carcinogenic material, has been used for decades as a friction material. This development has thus prompted a couple of research efforts geared towards its replacement for brake pad manufacture. Palm kernel fiber was used as an alternative filler material in conjunction with various quantities of epoxy resin as the matrix. Three sets of compositions were made, and the resulting specimens subjected to physical and mechanical tests using standard materials, procedures, and equipment. The essence is to determine their suitability and hence possible performance in service. The result showed that sample C with 40% palm kernel fiber content having hardness, compressive strength, abrasion resistance, specific gravity, water absorption, and oil absorption of 178 MPa, 96.2 MPa, 1.67 mg/m, 1.8 g/cm3, 1.86%, and 0.89%, respectively, had an optimum performance rating. It was equally ascertained that increase in the filler content had the effect of increase in hardness, wear resistance, and specific gravity of the composite brake pad, while water and oil absorption got decreased when compared with results obtained by other researchers using conventional brake pads made of other friction materials including asbestos. This is an indicator that palm kernel fiber is a possible and effective retrofit for asbestos as a filler material in automotive brake pad manufacture.


Author(s):  
P. Ashwath ◽  
M. Anthony Xavior ◽  
R. Rajendran

Abstract Looking at the background of the recent research on the area of the brake friction materials, composites are gaining the trust in being a potential replacement among the automobile sectors. The fabrication of the AA 2024 composites reinforced with 3 wt % Al2O3 is done using powder metallurgy technique followed by hot extrusion process. Current research work focuses on friction stir processed surface modified composites evaluated for the replacement of the currently used brake pads materials in automobile sectors. Surface characterization is carried out on the worn-out tracks of both brake materials developed and the counterpart employed using scanning electron microscope and XRD. The counterpart used in pin on disc configuration is exactly the material used in the automobile application (i.e. automobile brake disc plate material). Impact characteristics and tensile studies after friction stir processing (FSP) is studied as well. Coefficient of friction and wear loss characteristics in aspect of the tribological life of the composites developed is compared with the existing automobile brake pad components and found that FSP on composites served the purpose of the materials used in existing brake pads material.


Tribologia ◽  
2019 ◽  
Vol 286 (4) ◽  
pp. 113-119
Author(s):  
Waldemar TUSZYŃSKI ◽  
Michał GIBAŁA ◽  
Andrzej GOSPODARCZYK ◽  
Stanisław KOZIOŁ ◽  
Krzysztof MATECKI ◽  
...  

For the sake of driving safety, the right choice of the brake pad friction material and its manufacturing processes to obtain the appropriate tribological properties is a matter of priority for brake pad manufacturers. Determination of the tribological properties is best done in component tests, i.e. in the setup: brake pads – brake disc. At the request of one of the domestic brake pad manufacturers, as part of the POIR project, an inertia dynamometer for testing friction and wear of brake pads and brake discs was developed and manufactured, which was given the symbol T-33. A test methodology was developed based on the “Cold application section” procedure described in SAE J2522:2003. The T-33 inertia dynamometer is designed for testing brake pads and brake discs intended for five vehicles representing the passenger vehicle class and vans. The paper presents the new test stand, test methodology, and results of verification tests of the T-33 dynamometer (interlaboratory comparison tests) performed on the Cinquecento vehicle brake setup.


2011 ◽  
Vol 299-300 ◽  
pp. 820-823
Author(s):  
A.A.S. Ghazi ◽  
K. Chandra ◽  
P.S. Misra

To develop a high density brake pad for low duty application, a P/M route based on ‘Hot Powder Preform Forging’ was developed, which is not possible by sintering route. The mechanical properties of these materials were characterized using ASTM standards. The limitations of the conventional technique i.e. Compacting and Sintering for the manufacture of brake pads were tried to remove by adopting this technology. It offers better opportunity for pore free materials with better bonding between metallic and non-metallic constituents. Fade and Recovery test were done by using a Krauss Tester. μfade, μrecoveryand μperformancelie within the range of friction materials used for low duty applications.


Sign in / Sign up

Export Citation Format

Share Document