NUMERICAL STUDY OF THE HEAT TRANSFER RATE FOR UNSTEADY GÖRTLER VORTICES

Author(s):  
Adriano Takata ◽  
Leandro Franco de Souza
Author(s):  
Patrick H. Oosthuizen ◽  
J. T. Paul

Top Down – Bottom Up blinds have become quite popular in recent times. However the effects of such blind systems on the convective heat transfer from the window to the surrounding room have not been extensively studied and the effect of solar irradiation of the blind on the window heat transfer has not received significant attention. The purpose of the present work was therefore to numerically investigate the effect of solar irradiation of Top Down – Bottom Up slatted blinds on this convective heat transfer. An approximate model of the window-blind system has been adopted. The solar radiation falling on the blinds is assumed to produce a uniform rate of heat generation in the blind. The Boussinesq approximation has been used. Radiant heat transfer effects have been neglected. Conditions under which laminar, transitional and turbulent flows occur have been considered. The main emphasis is on the effect of the magnitude of the irradiation and of the size of the blind openings at the top and bottom of the window on the convective heat transfer rate from the window to the room.


2021 ◽  
Vol 13 (8) ◽  
pp. 168781402110391
Author(s):  
Ben Abdelmlek Khaoula ◽  
Ben Nejma Fayçal

This paper deals with a numerical study of mixed convection heat transfer in horizontal eccentric annulus. The inner cylinder is supposed hot and rotating, however the outer one is kept cold and motionless. The numerical problem was solved using COMSOL Multiphysics® which is based on finite element method. The resolution of the partial differential equations was conducted through an implicit scheme with the use of the damped Newton’s method. The present numerical analysis concerns the effect of eccentricity, rotation speed and Rayleigh number on the flow patterns, heat transfer rate, and energy efficiency of the process. It was found that the heat transfer rate increases with the increase of Rayleigh number. In addition, the heat transfer rate drops with the increase of rotation speed. Finally, we have demonstrated that maximum energy efficiency is achieved not only with higher Rayleigh number but also it is maximum with small eccentricity.


2021 ◽  
Author(s):  
Tony Avedissian

The free convective heat transfer in a double-glazed window with a between-pane Venetian blind has been studied numerically. The model geometry consists of a two-dimensional vertical cavity with a set of internal slats, centred between the glazings. Approximately 700 computational fluid dynamic solutions were conducted, including a grid sensitivity study. A wide set of geometrical and thermo-physical conditions was considered. Blind width to cavity width ratios of 0.5, 0.65, 0.8, and 0.9 were studied, along with three slat angles, 0º (fully open, +/- 45º (partially open), and 75º (closed). The blind to fluid thermal conductivity ratio was set to 15 and 4600. Cavity aspects of 20, 40, and 60, were examined over a Rayleigh number range of 10 to 10⁵, with the Prandtl number equal to 0.71. The resulting convective heat transfer data are presented in terms of average Nusselt numbers. Depending on the specific window/blind geometry, the solutions indicate that the blind can either reduce or enhance the convective heat transfer rate across the glazings. The present study does not consider radiation effects in the numerical solution. Therefore, a post-processing algorithm is presented that incorporates the convective and radiative influences, in order to determine the overall heat transfer rate across the window/blind system.


Author(s):  
T. Povey ◽  
K. S. Chana ◽  
T. V. Jones ◽  
J. Hurrion

Pronounced non-uniformities in combustor exit flow temperature (hot-streaks), which arise because of discrete injection of fuel and dilution air jets within the combustor and because of end-wall cooling flows, affect both component life and aerodynamics. Because it is very difficult to quantitatively predict the affects of these temperature non-uniformities on the heat transfer rates, designers are forced to budget for hot-streaks in the cooling system design process. Consequently, components are designed for higher working temperatures than the mass-mean gas temperature, and this imposes a significant overall performance penalty. An inadequate cooling budget can lead to reduced component life. An improved understanding of hot-streak migration physics, or robust correlations based on reliable experimental data, would help designers minimise the overhead on cooling flow that is currently a necessity. A number of recent research projects sponsored by a range of industrial gas turbine and aero-engine manufacturers attest to the growing interest in hot-streak physics. This paper presents measurements of surface and end-wall heat transfer rate for an HP nozzle guide vane (NGV) operating as part of a full HP turbine stage in an annular transonic rotating turbine facility. Measurements were conducted with both uniform stage inlet temperature and with two non-uniform temperature profiles. The temperature profiles were non-dimensionally similar to profiles measured in an engine. A difference of one half of an NGV pitch in the circumferential (clocking) position of the hot-streak with respect to the NGV was used to investigate the affect of clocking on the vane surface and end-wall heat transfer rate. The vane surface pressure distributions, and the results of a flow-visualisation study, which are also given, are used to aid interpretation of the results. The results are compared to two-dimensional predictions conducted using two different boundary layer methods. Experiments were conducted in the Isentropic Light Piston Facility (ILPF) at QinetiQ Farnborough, a short duration engine-size turbine facility. Mach number, Reynolds number and gas-to-wall temperature ratios were correctly modelled. It is believed that the heat transfer measurements presented in this paper are the first of their kind.


Processes ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 258 ◽  
Author(s):  
Lioua Kolsi ◽  
Salem Algarni ◽  
Hussein A. Mohammed ◽  
Walid Hassen ◽  
Emtinene Lajnef ◽  
...  

A numerical study is performed to investigate the effects of adding Carbon Nano Tube (CNT) and applying a magnetic field in two directions (vertical and horizontal) on the 3D-thermo-capillary natural convection. The cavity is differentially heated with a free upper surface. Governing equations are solved using the finite volume method. Results are presented in term of flow structure, temperature field and rate of heat transfer. In fact, results revealed that the flow structure and heat transfer rate are considerably affected by the magnitude and the direction of the magnetic field, the presence of thermocapillary forces and by increasing nanoparticles volume fraction. In opposition, the increase of the magnetic field magnitude leads to the control the flow causing flow stabilization by merging vortexes and reducing heat transfer rate.


2005 ◽  
Vol 129 (1) ◽  
pp. 32-43 ◽  
Author(s):  
T. Povey ◽  
K. S. Chana ◽  
T. V. Jones ◽  
J. Hurrion

Pronounced nonuniformities in combustor exit flow temperature (hot-streaks), which arise because of discrete injection of fuel and dilution air jets within the combustor and because of endwall cooling flows, affect both component life and aerodynamics. Because it is very difficult to quantitatively predict the effects of these temperature nonuniformities on the heat transfer rates, designers are forced to budget for hot-streaks in the cooling system design process. Consequently, components are designed for higher working temperatures than the mass-mean gas temperature, and this imposes a significant overall performance penalty. An inadequate cooling budget can lead to reduced component life. An improved understanding of hot-streak migration physics, or robust correlations based on reliable experimental data, would help designers minimize the overhead on cooling flow that is currently a necessity. A number of recent research projects sponsored by a range of industrial gas turbine and aero-engine manufacturers attest to the growing interest in hot-streak physics. This paper presents measurements of surface and endwall heat transfer rate for a high-pressure (HP) nozzle guide vane (NGV) operating as part of a full HP turbine stage in an annular transonic rotating turbine facility. Measurements were conducted with both uniform stage inlet temperature and with two nonuniform temperature profiles. The temperature profiles were nondimensionally similar to profiles measured in an engine. A difference of one-half of an NGV pitch in the circumferential (clocking) position of the hot-streak with respect to the NGV was used to investigate the affect of clocking on the vane surface and endwall heat transfer rate. The vane surface pressure distributions, and the results of a flow-visualization study, which are also given, are used to aid interpretation of the results. The results are compared to two-dimensional predictions conducted using two different boundary layer methods. Experiments were conducted in the Isentropic Light Piston Facility (ILPF) at QinetiQ Farnborough, a short-duration engine-sized turbine facility. Mach number, Reynolds number, and gas-to-wall temperature ratios were correctly modeled. It is believed that the heat transfer measurements presented in this paper are the first of their kind.


2014 ◽  
Vol 31 (1) ◽  
pp. 79-90
Author(s):  
K. Ramadan

ABSTRACTImpulsively started external convection at microscale level is studied numerically in both planar and axisymmetric geometries. Using similarity transformation, the resulting coupled partial and non-linear ordinary differential equations are simultaneously solved by finite differences together with a well established ordinary differential equation solver, over a range of problem parameters. Rarefaction effects within the slip flow regime on the thermal boundary layer response, heat transfer rate and transition time when system experiences sudden changes in surface temperature are analyzed, and a comparison between sudden surface cooling and heating is presented. The results show that the thermal boundary layer thickness, heat transfer rate and the transition time is considerably influenced by the degree of rarefaction. The transition time tends to be less sensitive with increasing rarefaction. The velocity slip and temperature jump factors are found to have opposite effects on the transition time and the heat transfer rate, with the velocity slip factor having the most profound influence on these parameters.


Author(s):  
Patrick H. Oosthuizen ◽  
David Naylor

The horizontal frame members that often protrude from the inner surface of a window can significantly effect the convective heat transfer rate from this inner surface to the room. The purpose of the present numerical study was to determine how the size of a pair of horizontal frame members effect this heat transfer rate. The flow has been assumed to be steady and conditions under which laminar, transitional, and turbulent flows occur are considered. Fluid properties have been assumed constant except for the density change with temperature that gives rise to the buoyancy forces, this being dealt with using the Boussinesq approach. The governing equations have been solved using the FLUENT commercial CFD code. The k-epsilon turbulence model with standard wall functions and with buoyancy force effects fully accounted for has been used. The solution has the following parameters: the Rayleigh number, the Prandtl number, the dimensionless window recess depth, and the dimensionless width and depth of the frame members. Results have been obtained for a Prandtl number of 0.74.


2012 ◽  
Vol 557-559 ◽  
pp. 2141-2146
Author(s):  
Yong Hua You ◽  
Ai Wu Fan ◽  
Chen Chen ◽  
Shun Li Fang ◽  
Shi Ping Jin ◽  
...  

Trefoil-hole baffles have good thermo-hydraulic performances as the support of heat pipes, however the published research paper is relatively limited. The present paper investigates the shellside thermo-hydraulic characteristics of shell-and-tube heat exchanger with trefoil-hole baffles (THB-STHX) under turbulent flow region, and the variations of shellside Nusselt number, pressure loss and overall thermo-hydraulic performance (PEC) with Reynolds number are obtained for baffles of varied pitch with the numerical method. CFD results demonstrate that the trefoil-hole baffle could enhance the heat transfer rate of shell side effectively, and the maximal average Nusselt number is augmented by ~2.3 times that of no baffle, while average pressure loss increases by ~9.6 times. The PEC value of shell side lies in the range of 16.3 and 73.8 kPa-1, and drops with the increment of Reynolds number and the decrement of baffle pitch, which indicates that the heat exchanger with trefoil-hole baffles of larger pitch could generate better overall performance at low Reynolds number. Moreover, the contours of velocity, turbulent intensity and temperature are presented for discussions. It is found that shellside high-speed jet, intensive recirculation flow and high turbulence level could enhance the heat transfer rate effectively. Besides good performance, THB-STHXs are easily manufactured, thus promise widely applied in various industries.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Nithin S. Panicker ◽  
Alberto Passalacqua ◽  
Rodney O. Fox

Abstract A numerical investigation is performed on buoyancy-driven homogeneous and heterogeneous bubbly flows to compare the bulk gas–liquid heat transfer effectiveness for Prandtl (Pr) numbers 0.2–20 and void fractions 〈αg〉 0.3–0.5. For this purpose, transient two-fluid model simulations of bubbles rising in a stagnant pool of liquid are conducted in a rectangular box by applying periodic boundary conditions to all the sides. The temperature difference (ΔT) between gas and liquid phase is averaged over the rectangular box and monitored with respect to time, the heat transfer rate is studied based on the time at which the ΔT tends to zero. The results of numerical study show that at low Pr numbers, faster decay of ΔT is observed for homogeneous flow of bubbles indicating higher heat transfer rate in comparison with the heterogeneous flow of bubbles for the same void fraction. On the contrary, for high Pr numbers, higher heat transfer rate is observed in heterogeneous flow compared to the homogeneous. The comparison of heat transfer behavior between different void fractions for heterogeneous flow show that, for low Pr numbers higher heat transfer rate is achieved for void fraction 0.4 in comparison with void fraction 0.5. And for high Pr numbers, higher heat transfer is observed for void fraction 0.5 in comparison with void fraction 0.4.


Sign in / Sign up

Export Citation Format

Share Document