scholarly journals Impacts of Environmental Changes on the Use of Cellular Storage Products in a Temperate Cnidarian-Dinoflagellate Symbiosis

2021 ◽  
Author(s):  
◽  
Lauren Fracasso

<p>Members of the phylum Cnidaria, such as corals and sea anemones, often form mutualistic endosymbiotic relationships with photosynthetic dinoflagellates that are founded upon a reciprocal exchange of nutrients. In this exchange, the cnidarian host provides its symbionts with nutrients derived through respiration, heterotrophy, and the environment, while the symbionts provide their host with products of photosynthesis. The energy derived from this exchange is utilized for metabolism, growth, and reproduction; alternatively, it can be accumulated into storage bodies for use during nutritional shortages or stress. Cnidarian-algal symbioses can be found throughout the world and vary in their sensitivity to stress, with environmental changes playing a prominent role in inducing stress. Tropical cnidarian-dinoflagellate symbioses are particularly vulnerable to temperature change, with increases of just 1-2℃ above their upper thermal limit often resulting in bleaching (the breakdown of symbiosis via symbiont expulsion). In contrast, temperate cnidarian-dinoflagellate symbioses exhibit far greater tolerance to such environmental stressors, and are rarely seen to bleach in the field. It is unclear how temperate cnidarian-dinoflagellate symbioses achieve this resilience and stability.   This thesis examines the effects of changes in temperature and irradiance on the content of energy-rich cellular storage products in the temperate sea anemone Anthopleura aureoradiata and its dinoflagellate endosymbionts (family: Symbiodiniaceae), in order to assess the potential of these compounds in contributing to the overall stability of the symbiosis. In particular, symbiont density and chlorophyll content (as well as photosynthetic efficiency, for experimental study only), in addition to both symbiont and host protein content, served as indicators of physiological health, and were then related to the accumulation of cellular storage products such as lipids and carbohydrates.  A field study was conducted in which a population of A. aureoradiata was sampled from Wellington Harbor, New Zealand, at monthly intervals for one year. Despite monthly and seasonal variability in the physiological parameters measured, the symbiosis remained functional and stable (i.e. no signs of bleaching) throughout the year. The greatest inter-seasonal variation occurred in the symbiont cell-specific carbohydrate content, which decreased significantly between spring and summer. In contrast, host lipid content exhibited less variation than all other symbiont and host storage products. These observations suggest that symbiont carbohydrate stores are primarily utilized to sustain the symbiosis during times of seasonal environmental change (in this case, correlating with increased light and temperature during summer), while lipids may be kept in reserve. The robustness of this field population is expected; being a native species, A. aureoradiata is likely highly acclimated to the conditions that were observed throughout the year of this field study. A separate population of A. aureoradiata was subsequently acclimated to a moderate regime of temperature and irradiance, and then exposed to one of six treatments of different combined temperatures and irradiances (based on seasonal conditions in the Wellington Harbour), to establish their interactive effects on cellular storage product content. Specifically, three thermal regimes (low: 9±1°C, moderate: 14.5±1°C, high: 21±1°C), each at a low (70±10 µmol photons m-2 s-1) or high (145±15 µmol photons m-2 s-1) irradiance, were maintained for a total of sixteen weeks. Unlike in the field, a breakdown in symbiosis was observed; photo-physiological dysfunction of the symbiosis was observed within four weeks in all anemones exposed to low temperature at both irradiances, and bleaching was apparent by week eight. This response likely arose from a combination of the rapid decrease in temperature experienced upon distribution into the low-temperature tank, as well as the prolonged nature of the conditions in the experiment, which would not be experienced in the field. In contrast, the anemones maintained at both irradiances in the moderate and high temperature treatments maintained a stable symbiosis, suggesting that these conditions were not extreme enough to cause notable stress. In fact, anemones kept under both low and high irradiance within the moderate temperature treatment increased in symbiont density and exhibited the highest host lipid content relative to the other treatments, suggesting that this treatment was near-optimal for the symbiosis. Perhaps interestingly, both the moderate and high temperature treatments induced significant reductions in symbiont-specific protein, lipid, and carbohydrate content, while host storage products decreased less drastically. This observation suggests increased utilization of symbiont storage products to maintain a healthy symbiosis under these experimental conditions.   My findings are consistent with previous reports of seasonal stability in temperate cnidarian-dinoflagellate symbioses; moreover, I provide experimental evidence for the utilization of symbiont storage products as a means of maintaining symbiosis stability, though this was less apparent in the field. Although recent studies have made great progress in identifying patterns of stability in temperate cnidarian-dinoflagellate symbioses, additional studies are required to build a more comprehensive picture of the mechanisms involved. Future studies would benefit from increased frequency of field sampling, including assessments of nutrient availability and host reproductive cycles, to better understand the monthly and seasonal variability in the intracellular storage product use observed in the field. Nevertheless, results of this study contribute to an improved understanding of the physiology and remarkable stability of temperate cnidarian-dinoflagellate symbioses, with implications for predictions of how they might respond to future climate change scenarios.</p>

2021 ◽  
Author(s):  
◽  
Lauren Fracasso

<p>Members of the phylum Cnidaria, such as corals and sea anemones, often form mutualistic endosymbiotic relationships with photosynthetic dinoflagellates that are founded upon a reciprocal exchange of nutrients. In this exchange, the cnidarian host provides its symbionts with nutrients derived through respiration, heterotrophy, and the environment, while the symbionts provide their host with products of photosynthesis. The energy derived from this exchange is utilized for metabolism, growth, and reproduction; alternatively, it can be accumulated into storage bodies for use during nutritional shortages or stress. Cnidarian-algal symbioses can be found throughout the world and vary in their sensitivity to stress, with environmental changes playing a prominent role in inducing stress. Tropical cnidarian-dinoflagellate symbioses are particularly vulnerable to temperature change, with increases of just 1-2℃ above their upper thermal limit often resulting in bleaching (the breakdown of symbiosis via symbiont expulsion). In contrast, temperate cnidarian-dinoflagellate symbioses exhibit far greater tolerance to such environmental stressors, and are rarely seen to bleach in the field. It is unclear how temperate cnidarian-dinoflagellate symbioses achieve this resilience and stability.   This thesis examines the effects of changes in temperature and irradiance on the content of energy-rich cellular storage products in the temperate sea anemone Anthopleura aureoradiata and its dinoflagellate endosymbionts (family: Symbiodiniaceae), in order to assess the potential of these compounds in contributing to the overall stability of the symbiosis. In particular, symbiont density and chlorophyll content (as well as photosynthetic efficiency, for experimental study only), in addition to both symbiont and host protein content, served as indicators of physiological health, and were then related to the accumulation of cellular storage products such as lipids and carbohydrates.  A field study was conducted in which a population of A. aureoradiata was sampled from Wellington Harbor, New Zealand, at monthly intervals for one year. Despite monthly and seasonal variability in the physiological parameters measured, the symbiosis remained functional and stable (i.e. no signs of bleaching) throughout the year. The greatest inter-seasonal variation occurred in the symbiont cell-specific carbohydrate content, which decreased significantly between spring and summer. In contrast, host lipid content exhibited less variation than all other symbiont and host storage products. These observations suggest that symbiont carbohydrate stores are primarily utilized to sustain the symbiosis during times of seasonal environmental change (in this case, correlating with increased light and temperature during summer), while lipids may be kept in reserve. The robustness of this field population is expected; being a native species, A. aureoradiata is likely highly acclimated to the conditions that were observed throughout the year of this field study. A separate population of A. aureoradiata was subsequently acclimated to a moderate regime of temperature and irradiance, and then exposed to one of six treatments of different combined temperatures and irradiances (based on seasonal conditions in the Wellington Harbour), to establish their interactive effects on cellular storage product content. Specifically, three thermal regimes (low: 9±1°C, moderate: 14.5±1°C, high: 21±1°C), each at a low (70±10 µmol photons m-2 s-1) or high (145±15 µmol photons m-2 s-1) irradiance, were maintained for a total of sixteen weeks. Unlike in the field, a breakdown in symbiosis was observed; photo-physiological dysfunction of the symbiosis was observed within four weeks in all anemones exposed to low temperature at both irradiances, and bleaching was apparent by week eight. This response likely arose from a combination of the rapid decrease in temperature experienced upon distribution into the low-temperature tank, as well as the prolonged nature of the conditions in the experiment, which would not be experienced in the field. In contrast, the anemones maintained at both irradiances in the moderate and high temperature treatments maintained a stable symbiosis, suggesting that these conditions were not extreme enough to cause notable stress. In fact, anemones kept under both low and high irradiance within the moderate temperature treatment increased in symbiont density and exhibited the highest host lipid content relative to the other treatments, suggesting that this treatment was near-optimal for the symbiosis. Perhaps interestingly, both the moderate and high temperature treatments induced significant reductions in symbiont-specific protein, lipid, and carbohydrate content, while host storage products decreased less drastically. This observation suggests increased utilization of symbiont storage products to maintain a healthy symbiosis under these experimental conditions.   My findings are consistent with previous reports of seasonal stability in temperate cnidarian-dinoflagellate symbioses; moreover, I provide experimental evidence for the utilization of symbiont storage products as a means of maintaining symbiosis stability, though this was less apparent in the field. Although recent studies have made great progress in identifying patterns of stability in temperate cnidarian-dinoflagellate symbioses, additional studies are required to build a more comprehensive picture of the mechanisms involved. Future studies would benefit from increased frequency of field sampling, including assessments of nutrient availability and host reproductive cycles, to better understand the monthly and seasonal variability in the intracellular storage product use observed in the field. Nevertheless, results of this study contribute to an improved understanding of the physiology and remarkable stability of temperate cnidarian-dinoflagellate symbioses, with implications for predictions of how they might respond to future climate change scenarios.</p>


Author(s):  
Francisco Antonio Coelho Junior ◽  
Pedro Marques-Quinteiro ◽  
Cristiane Faiad

The global outbreak of coronavirus SARS-CoV-2 (COVID-19) disease is affecting every part of human lives. Several researchers investigated to understand how temperature, humidity and air pollution had an influence on COVID-19 transmission. Transmission of COVID-19 due to temperature and humidity is a pertinent question. There is a lack of study of Covid-19 in tropical climate countries. This study aims to analyze the correlation between weather and Covid-19 pandemic in Brasília and Manaus, two states of Brazil. The research topic is important to know how the climate affects or predisposes the spread of COVID-19. This knowledge will provide elements to decision-makers regarding health and public health standards and decisions. This study employed a secondary data analysis of surveillance data of Covid-19 from the Ministry of Health of Brazil and weather from the National Institute of Meteorology of Brazil. These are Brazilian public organizations that, on a daily basis, record this information on a systematic basis of dates. They are central federal organizations, responsible for data analysis and public policy planning to combat Covid-19. The data are reliables and obtained from reliable government sources. We systematically record all information for 51 days, during a period of high disease growth in the country. The components of weather include low temperature (°C), high temperature (°C), temperature average (°C), humidity (%), and amount of rainfall (mm). Pearson-rank correlation test showed that high temperature (r=.643; p<.001), low temperature (r=.640; p<.001) and humidity (r=.248; p<.005) were significantly correlated with deaths caused by Covid-19 pandemic used for data analysis. Social isolation rate (β = -.254; p<.001) and daily record of new cases (β = .332; p<.001), with adjusted R-squared of .623, were the predictors of deaths acummuled by Covid-19. The finding serves as an input to reduce the incidence rate of Covid-19 in Brazil. Statistical results show evidence of the relationship between climate elements and COVID-19 indicators, such as the number of deaths, spread of contamination and social isolation rate. The study of dimensions of climate as a seasonal pattern and its relationship to COVID-19 benefits epidemiological surveillance. The more geographic spaces are known, more will help to understand the differences in disease behavior in different places. The results of this research showed that environmental conditions influence the contagion and speed of transmission of Covid-19. Policies that contribute to benefits to health and sustainability need to be planned. The contribution of climate and other factors, such as air pollution, for example, require additional studies. Environmental changes, such as climate change and biodiversity, must also be investigated for their impact on human health. Acting in prevention, including the promotion of socially acceptable behaviors on the part of the population, seems to be the best way to deal with Covid-19.


HortScience ◽  
1995 ◽  
Vol 30 (3) ◽  
pp. 439f-439
Author(s):  
Tim D. Davis ◽  
Daksha Sankhla ◽  
Narendra Sankhla

Carnation cultivars `German Red' and `Chabaud' were planted in the field in Dallas, Texas, on 26 May 1994. During the subsequent 3 months, the average daily high temperature was 33C, and the average daily low temperature was 22C. `German Red' plants increased in height and diameter several-fold during this period. In contrast, `Chabaud' did not increase in height or diameter. `German Red' plants began flowering in early August, and by 2 Sept., all of the plants were blooming. None of the `Chabaud' plants produced flowers, and only 50% of the original plants were still alive on 2 Sept. Mean shoot dry weight per plant on 2 Sept. was 71.6 g for `German Red' and only 2.4 g for `Chabaud'. These results document the extraordinary heat tolerance of `German Red' carnation. This plant not only survived the summer, but also grew and began blooming during the hottest time of the year.


Author(s):  
P.P.K. Smith

Grains of pigeonite, a calcium-poor silicate mineral of the pyroxene group, from the Whin Sill dolerite have been ion-thinned and examined by TEM. The pigeonite is strongly zoned chemically from the composition Wo8En64FS28 in the core to Wo13En34FS53 at the rim. Two phase transformations have occurred during the cooling of this pigeonite:- exsolution of augite, a more calcic pyroxene, and inversion of the pigeonite from the high- temperature C face-centred form to the low-temperature primitive form, with the formation of antiphase boundaries (APB's). Different sequences of these exsolution and inversion reactions, together with different nucleation mechanisms of the augite, have created three distinct microstructures depending on the position in the grain.In the core of the grains small platelets of augite about 0.02μm thick have farmed parallel to the (001) plane (Fig. 1). These are thought to have exsolved by homogeneous nucleation. Subsequently the inversion of the pigeonite has led to the creation of APB's.


2020 ◽  
Vol 10 (10) ◽  
pp. 59-67
Author(s):  
Victor N. ANTIPOV ◽  
◽  
Andrey D. GROZOV ◽  
Anna V. IVANOVA ◽  
◽  
...  

The overall dimensions and mass of wind power units with capacities larger than 10 MW can be improved and their cost can be decreased by developing and constructing superconducting synchronous generators. The article analyzes foreign conceptual designs of superconducting synchronous generators based on different principles: with the use of high- and low-temperature superconductivity, fully superconducting or only with a superconducting excitation system, and with the use of different materials (MgB2, Bi2223, YBCO). A high cost of superconducting materials is the main factor impeding commercial application of superconducting generators. In view of the state of the art in the technology for manufacturing superconductors and their cost, a conclusion is drawn, according to which a synchronous gearless superconducting wind generator with a capacity of 10 MW with the field winding made of a high-temperature superconducting material (MgB2, Bi-2223 or YBCO) with the «ferromagnetic stator — ferromagnetic rotor» topology, with the stator diameter equal to 7—9 m, and with the number of poles equal to 32—40 has prospects for its practical use in the nearest future.


Alloy Digest ◽  
1980 ◽  
Vol 29 (12) ◽  

Abstract SOMERS LTA Copper is a wrought copper foil that can be annealed at 350 F in 15 minutes to the full-soft condition; its use simplifies the manufacture of printed circuits (LTA = Low-Temperature Annealable). LTA Copper is especially useful for foil weights up to and including one ounce per square foot (0.0014-inch thick) for laminating to high-temperature dielectric substrates. This datasheet provides information on composition, physical properties, and elasticity as well as fatigue. It also includes information on forming, heat treating, and machining. Filing Code: Cu-407. Producer or source: Olin Corporation.


Alloy Digest ◽  
1958 ◽  
Vol 7 (2) ◽  

Abstract CHRO-MOW is a tough hot work steel which will harden from a relatively low temperature in air. It possesses a desirable combination of toughness and red-hardness. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on high temperature performance as well as forming, heat treating, and machining. Filing Code: TS-67. Producer or source: Crucible Steel Company of America.


Alloy Digest ◽  
1960 ◽  
Vol 9 (3) ◽  

Abstract NICLOY 5 is a low carbon, nickel ferritic steel reecommended for low temperature service. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-96. Producer or source: Babcock & Wilcox Company.


1961 ◽  
Vol 5 ◽  
pp. 276-284
Author(s):  
E. L. Moore ◽  
J. S. Metcalf

AbstractHigh-temperature X-ray diffraction techniques were employed to study the condensation reactions which occur when sodium orthophosphates are heated to 380°C. Crystalline Na4P2O7 and an amorphous phase were formed first from an equimolar mixture of Na2HPO4·NaH2PO4 and Na2HPO4 at temperatures above 150°C. Further heating resulted in the formation of Na5P3O10-I (high-temperature form) at the expense of the crystalline Na4P4O7 and amorphous phase. Crystalline Na5P3O10-II (low-temperature form) appears after Na5P3O10-I.Conditions which affect the yield of crystalline Na4P2O7 and amorphous phase as intermediates and their effect on the yield of Na5P3O10 are also presented.


Sign in / Sign up

Export Citation Format

Share Document