scholarly journals A 28GHz Power Amplifier with Analog Predistortion Linearizer in 65nm CMOS

2021 ◽  
Vol 5 (2) ◽  
pp. 5-10
Author(s):  
He Peng ◽  
Yuqing Dou

This paper proposes that a radio frequency power amplifier is suitable for a 5G millimeter wave. It adopts a three-stage single-ended structure at 28GHz. An analog predistortion linearization method is used to improve the linearity of the power amplifier (PA). As a result, there is a significant improvement in power-added efficiency (PAE) and linearity is achieved. The Ka-band PA is implemented in TSMC 65nm CMOS process. At 1.2V supply voltage, the PA proposed in this paper achieves a saturated output power of 15.9dBm and a PAE of 16%. After linearization, the output power at the 1dB compression point is increased by 2dBm, with efficient gain compensation performance.

Circuit World ◽  
2019 ◽  
Vol 46 (1) ◽  
pp. 1-5
Author(s):  
Yanfeng Fang ◽  
Yijiang Zhang

Purpose This paper aims to implement a new high output power fully integrated 23.1 to 27.2 GHz gallium arsenide heterojunction bipolar transistor power amplifier (PA) to meet the stringent linearity requirements of LTE systems. Design/methodology/approach The direct input power dividing technique is used on the chip. Broadband input and output matching techniques are used for broadband Doherty operation. Findings The PA achieves a small-signal gain of 22.8 dB at 25.1 GHz and a saturated output power of 24.3 dBm at 25.1 GHz with a maximum power added efficiency of 31.7%. The PA occupies 1.56 mm2 (including pads) and consumes a maximum current of 79.91 mA from a 9 V supply. Originality/value In this paper, the author proposed a novel direct input dividing technique with broadband matching circuits using a low Q output matching technique, and demonstrated a fully-integrated Doherty PA across frequencies of 23.1∼27.2 GHz for long term evolution-license auxiliary access (LTE-LAA) handset applications.


Circuit World ◽  
2020 ◽  
Vol 46 (4) ◽  
pp. 243-248
Author(s):  
Min Liu ◽  
Panpan Xu ◽  
Jincan Zhang ◽  
Bo Liu ◽  
Liwen Zhang

Purpose Power amplifiers (PAs) play an important role in wireless communications because they dominate system performance. High-linearity broadband PAs are of great value for potential use in multi-band system implementation. The purpose of this paper is to present a cascode power amplifier architecture to achieve high power and high efficiency requirements for 4.2∼5.4 GHz applications. Design/methodology/approach A common emitter (CE) configuration with a stacked common base configuration of heterojunction bipolar transistor (HBT) is used to achieve high power. T-type matching network is used as input matching network. To increase the bandwidth, the output matching networks are implemented using the two L-networks. Findings By using the proposed method, the stacked PA demonstrates a maximum saturated output power of 26.2 dBm, a compact chip size of 1.17 × 0.59 mm2 and a maximum power-added efficiency of 46.3 per cent. The PA shows a wideband small signal gain with less than 3 dB variation over working frequency. The saturated output power of the proposed PA is higher than 25 dBm between 4.2 and 5.4 GHz. Originality/value The technology adopted for the design of the 4.2-to-5.4 GHz stacked PA is the 2-µm gallium arsenide HBT process. Based on the proposed method, a better power performance of 3 dB improvement can be achieved as compared with the conventional CE or common-source amplifier because of high output stacking impedance.


2012 ◽  
Vol 4 (6) ◽  
pp. 559-567 ◽  
Author(s):  
Ahmed Sayed ◽  
Sebastian Preis ◽  
Georg Boeck

In this paper, a 10 W ultra-broadband GaN power amplifier (PA) is designed, fabricated, and tested. The suggested design technique provides a more accurate starting point for matching network synthesis and better prediction of achievable circuit performance. A negative-image model was used to fit the extracted optimum impedances based on source-/load-pull technique and multi-section impedance matching networks were designed. The implemented amplifier presents an excellent broadband performance, resulting in a gain of 8.5 ± 0.5 dB, saturated output power of ≥10 W, and power added efficiency (PAE) of ≥23% over the whole bandwidth. The linearity performance has also been characterized. An output third-order intercept point (OIP3) of ≥45 dBm was extracted based on a two-tone measurement technique in the operating bandwidth with different frequency spacing values. The memory effect based on AM/AM and AM/PM conversions was also characterized using a modulated WiMAX signal of 10 MHz bandwidth at 5.8 GHz. Furthermore, a broadband Wilkinson combiner was designed for the same bandwidth with very low loss to extend the overall output power. Excellent agreement between simulated and measured PA performances was also achieved.


Author(s):  
Mu-Chun Wang ◽  
Zhen-Ying Hsieh ◽  
Chieu-Ying Hsu ◽  
Shuang-Yuan Chen ◽  
Heng-Sheng Huang

In this paper, we present a single-stage class-E power amplifier with multiple-gated shape as well as 0.18μm complementary metal-oxide-semiconductor (CMOS) process for 2.4GHz Industry-Science-Medicine (ISM) band. This power amplifier is able to be easily integrated into the system-on-chip (SoC) circuit. For the competition of lower cost and high integration in marketing concern, CMOS technology is fundamentally better than GaAs technology. We adopt the Advanced Design System software in circuit simulation coming from Agilent Company through the Chip Implementation Center (CIC) channel plus TSMC 0.18 μm device models. The simulation results with temperature effect, show the good performance such as an output power achievement of +22dBm under a 1.8V supply voltage; the power-added efficiency (PAE) is over 30%; the output impedance (S22) and the input impedance (S11) are fully lower than −15dB; the power gain (S21) is +11dB; the inverse isolation (S12) is below −26dB. This amplifier reaches its 1-dB compression point at an output level of 16.5dBm related to the input power 6.5dBm position. The output power with temperature variation from 0°C to 125°C depicts an acceptable spec. range, too.


2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Chang-Hsi Wu ◽  
Hong-Cheng You ◽  
Shun-Zhao Huang

Abstract An architecture of 5.2/5.8-GHz dual-band on-off keying (DBOOK) modulated transmitter is designed in a 0.18-μm CMOS technology. The proposed DBOOK transmitter is used in the biosignal transmission system with high power efficiency and small area. To reduce power consumption and enhance output swing, two pairs of center-tapped transformers are used as both LC tank and source grounding choke for the designed voltage controlled oscillator (VCO). Switching capacitances are used to achieve dual band operations, and a complemented power combiner is used to merge the differential output power of VCO to a single-ended output. Besides, the linearizer circuits are used in the proposed power amplifier with wideband output matching to improve the linearity both at 5.2/5.8-GHz bands. The designed DBOOK transmitter is implemented by dividing it into two chips. One chip implements the dual-band switching VCO and power combiner, and the other chip implements a linear power amplifier including dual-band operation. The first chip drives an output power of 2.2mW with consuming power of 5.13 mW from 1.1 V supply voltage. With the chip size including pad of 0.61 × 0.91 m2, the measured data rate and transmission efficiency attained are 100 Mb/s and 51 pJ/bit, respectively. The second chip, for power enhanced mode, exhibits P1 dB of −9 dBm, IIP3 of 1 dBm, the output power 1 dB compression point of 12.42 dBm, OIP3 of about 21 dBm, maximum output power of 17.02/16.18 dBm, and power added efficiency of 17.13/16.95% for 5.2/ 5.8 GHz. The chip size including pads is 0:693 × 1:084mm2.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Wen An Tsou ◽  
Wen Shen Wuen ◽  
Tzu Yi Yang ◽  
Kuei Ann Wen

Analysis and compensation methodology of the AM-AM and AM-PM distortion of cascode class-E power amplifiers are presented. A physical-based model is proposed to illustrate that the nonlinear capacitance and transconductance cause the AM-AM and AM-PM distortion when modulating the supply voltage of the PA. A novel methodology that can reduce the distortion is also proposed. By degenerating common-gate transistor into a resistor, the constant equivalent impedance is obtained so that the AM-AM and AM-PM distortion is compensated. An experimental prototype of 2.6 GHz cascode class-E power amplifier with the AM-AM and AM-PM compensation has been integrated in a 0.18 μm CMOS technology, occupies a total die area of 1.6 mm2. It achieves a drain efficiency of 17.8% and a power-added efficiency of 16.6% while delivering 12 dBm of linear output power and drawing 31 mA from a 1.8 V supply. Finally, a co-simulation result demonstrated that, when the distortion of the PA has been compensated, the EVM is improved from −17 dB to −19 dB with an IEEE802.11a-like signal source.


2014 ◽  
Vol 23 (08) ◽  
pp. 1450111 ◽  
Author(s):  
U. ESWARAN ◽  
H. RAMIAH ◽  
J. KANESAN ◽  
A. W. REZA

In this paper, a 1 mm × 1 mm fully integrated wideband dual-stage power amplifier (PA) for long-term evolution (LTE) band 1 (1920–1980 MHz) is presented. Fabricated in a 2 μm InGaP/GaAs hetero-junction bipolar transistor (HBT) process, the operating gain is observed to be 31.3 dB. The PA meets the minimum adjacent channel leakage ratio (ACLR) requirement of -30 dBc for LTE with 20 MHz wide channel bandwidth up to an output power of 30 dBm with the aid of a novel dual stage linearizer. Biased at low quiescent current of less than 100 mA with a headroom consumption of 3.5 V, the power added efficiency (PAE) is observed to be 38.29% at 30 dBm. With this high linear output power, the stringent requirement of antenna path loss is nullified. PA serves to be the first reported work to achieve 30 dBm linear output power at supply voltage of 3.5 V.


2011 ◽  
Vol 3 (2) ◽  
pp. 99-105 ◽  
Author(s):  
Dixian Zhao ◽  
Ying He ◽  
Lianming Li ◽  
Dieter Joos ◽  
Wim Philibert ◽  
...  

A 52–61 GHz power amplifier (PA) is implemented in 65 nm bulk complementary metal oxide semiconductor (CMOS) technology. The proposed PA employs a transformer-based power combiner to sum the output power from two unit PAs. Each unit PA uses transformer-coupled two-stage differential cascode topology. The differential cascode PA is able to increase the output power and ensure stability. The transformer-based passives enable a compact layout with the PA core area of only 0.3 mm2. The PA achieves a peak power gain of 10.2 dB with 3-dB bandwidth of 9 GHz. The measured saturated output power is 14.8 dBm with a peak power-added efficiency (PAE) of 7.2%. The reverse isolation is smaller than −33 dB from 25 to 65 GHz. The PA consumes a quiescent current of 143 mA from a 1.6 V supply.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 494 ◽  
Author(s):  
Alfred Lim ◽  
Aaron Tan ◽  
Zhi-Hui Kong ◽  
Kaixue Ma

This paper proposes a new technique and design methodology on a transformer-based Class-E complementary metal-oxide-semiconductor (CMOS) power amplifier (PA) with only one transformer and two capacitors in the load network. An analysis of this amplifier is presented together with an accurate and simple design procedure. The experimental results are in good agreement with the theoretical analysis. The following performance parameters are determined for optimum operation: The current and voltage waveform, the peak value of drain current and drain-to-source voltage, the output power, the efficiency and the component values of the load network are determined to be essential for optimum operation. The measured drain efficiency (DE) and power-added efficiency (PAE) is over 70% with 10-dBm output power at 2.4 GHz, using a 65 nm CMOS process technology.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 890
Author(s):  
Kyu-Jin Choi ◽  
Jae-Hyun Park ◽  
Seong-Kyun Kim ◽  
Byung-Sung Kim

A K-band complementary metal-oxide-semiconductor (CMOS) differential cascode power amplifier is designed with the thin-oxide field effect transistor (FET) common source (CS) stage and thick-oxide FET common gate (CG) stage. Use of the thick-oxide CG stage affords the high supply voltage to 3.7 V and enables the high output power. Additionally, simple analysis shows that the gain degradation due to the low cut-off frequency of the thick-oxide CG FET can be compensated by the high output resistance of the thick-oxide FET if the inter-stage node is neutralized. The measured results of the proposed power amplifier demonstrate the saturated output power of the 23.3 dBm with the 31.3% peak power added efficiency (PAE) at 24 GHz frequency. The chip is fabricated in 65-nm low power (LP) CMOS technology and the chip size including all pads is 700 μm × 630 μm.


Sign in / Sign up

Export Citation Format

Share Document